Fix unnecessary super calls (#38897)

Signed-off-by: cyy <cyyever@outlook.com>
This commit is contained in:
Yuanyuan Chen 2025-06-19 19:45:51 +08:00 committed by GitHub
parent b949747b54
commit 0a53df1a77
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 40 additions and 44 deletions

View File

@ -135,7 +135,7 @@ class BitGroupNormActivation(nn.GroupNorm):
""" """
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True): def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine) super().__init__(config.num_groups, num_channels, eps=eps, affine=affine)
if apply_activation: if apply_activation:
self.activation = ACT2FN[config.hidden_act] self.activation = ACT2FN[config.hidden_act]
else: else:

View File

@ -1183,7 +1183,7 @@ class BlenderbotModel(BlenderbotPreTrainedModel):
) )
return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path) return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
def get_input_embeddings(self): def get_input_embeddings(self):
return self.shared return self.shared
@ -1344,9 +1344,7 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel, GenerationMi
) )
return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path) return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
return super(BlenderbotForConditionalGeneration, cls).from_pretrained( return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
pretrained_model_name_or_path, *model_args, **kwargs
)
def get_encoder(self): def get_encoder(self):
return self.model.get_encoder() return self.model.get_encoder()

View File

@ -74,7 +74,7 @@ class BrosPositionalEmbedding1D(nn.Module):
# Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15 # Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
def __init__(self, config): def __init__(self, config):
super(BrosPositionalEmbedding1D, self).__init__() super().__init__()
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
@ -93,7 +93,7 @@ class BrosPositionalEmbedding1D(nn.Module):
class BrosPositionalEmbedding2D(nn.Module): class BrosPositionalEmbedding2D(nn.Module):
def __init__(self, config): def __init__(self, config):
super(BrosPositionalEmbedding2D, self).__init__() super().__init__()
self.dim_bbox = config.dim_bbox self.dim_bbox = config.dim_bbox
self.x_pos_emb = BrosPositionalEmbedding1D(config) self.x_pos_emb = BrosPositionalEmbedding1D(config)
@ -112,7 +112,7 @@ class BrosPositionalEmbedding2D(nn.Module):
class BrosBboxEmbeddings(nn.Module): class BrosBboxEmbeddings(nn.Module):
def __init__(self, config): def __init__(self, config):
super(BrosBboxEmbeddings, self).__init__() super().__init__()
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config) self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False) self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)

View File

@ -1229,7 +1229,7 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel):
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels

View File

@ -484,7 +484,7 @@ ERNIE_M_INPUTS_DOCSTRING = r"""
) )
class ErnieMModel(ErnieMPreTrainedModel): class ErnieMModel(ErnieMPreTrainedModel):
def __init__(self, config, add_pooling_layer=True): def __init__(self, config, add_pooling_layer=True):
super(ErnieMModel, self).__init__(config) super().__init__(config)
self.initializer_range = config.initializer_range self.initializer_range = config.initializer_range
self.embeddings = ErnieMEmbeddings(config) self.embeddings = ErnieMEmbeddings(config)
self.encoder = ErnieMEncoder(config) self.encoder = ErnieMEncoder(config)
@ -964,7 +964,7 @@ class ErnieMForQuestionAnswering(ErnieMPreTrainedModel):
) )
class ErnieMForInformationExtraction(ErnieMPreTrainedModel): class ErnieMForInformationExtraction(ErnieMPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super(ErnieMForInformationExtraction, self).__init__(config) super().__init__(config)
self.ernie_m = ErnieMModel(config) self.ernie_m = ErnieMModel(config)
self.linear_start = nn.Linear(config.hidden_size, 1) self.linear_start = nn.Linear(config.hidden_size, 1)
self.linear_end = nn.Linear(config.hidden_size, 1) self.linear_end = nn.Linear(config.hidden_size, 1)

View File

@ -324,7 +324,7 @@ class GraniteMoeMoE(nn.Module):
""" """
def __init__(self, config: GraniteMoeConfig): def __init__(self, config: GraniteMoeConfig):
super(GraniteMoeMoE, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.intermediate_size self.hidden_size = config.intermediate_size

View File

@ -856,7 +856,7 @@ class GraniteMoeHybridMLP(nn.Module):
""" """
def __init__(self, config: GraniteMoeHybridConfig): def __init__(self, config: GraniteMoeHybridConfig):
super(GraniteMoeHybridMLP, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.shared_intermediate_size self.hidden_size = config.shared_intermediate_size
@ -995,7 +995,7 @@ class GraniteMoeHybridMoE(nn.Module):
""" """
def __init__(self, config: GraniteMoeHybridConfig): def __init__(self, config: GraniteMoeHybridConfig):
super(GraniteMoeHybridMoE, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.intermediate_size self.hidden_size = config.intermediate_size

View File

@ -56,7 +56,7 @@ class GraniteMoeSharedMLP(nn.Module):
""" """
def __init__(self, config: GraniteMoeSharedConfig): def __init__(self, config: GraniteMoeSharedConfig):
super(GraniteMoeSharedMLP, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.shared_intermediate_size self.hidden_size = config.shared_intermediate_size
@ -195,7 +195,7 @@ class GraniteMoeSharedMoE(nn.Module):
""" """
def __init__(self, config: GraniteMoeSharedConfig): def __init__(self, config: GraniteMoeSharedConfig):
super(GraniteMoeSharedMoE, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.intermediate_size self.hidden_size = config.intermediate_size

View File

@ -43,7 +43,7 @@ class GraniteMoeSharedMLP(nn.Module):
""" """
def __init__(self, config: GraniteMoeSharedConfig): def __init__(self, config: GraniteMoeSharedConfig):
super(GraniteMoeSharedMLP, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.shared_intermediate_size self.hidden_size = config.shared_intermediate_size

View File

@ -233,7 +233,7 @@ class JetMoeMoE(nn.Module):
""" """
def __init__(self, config: JetMoeConfig): def __init__(self, config: JetMoeConfig):
super(JetMoeMoE, self).__init__() super().__init__()
self.input_size = config.hidden_size self.input_size = config.hidden_size
self.hidden_size = config.intermediate_size self.hidden_size = config.intermediate_size
@ -291,7 +291,7 @@ class JetMoeMoA(nn.Module):
""" """
def __init__(self, config: JetMoeConfig): def __init__(self, config: JetMoeConfig):
super(JetMoeMoA, self).__init__() super().__init__()
self.num_experts = config.num_local_experts self.num_experts = config.num_local_experts
self.input_size = config.hidden_size self.input_size = config.hidden_size

View File

@ -47,7 +47,7 @@ class LayoutLMEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.""" """Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config): def __init__(self, config):
super(LayoutLMEmbeddings, self).__init__() super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
@ -635,7 +635,7 @@ class LayoutLMPreTrainedModel(PreTrainedModel):
@auto_docstring @auto_docstring
class LayoutLMModel(LayoutLMPreTrainedModel): class LayoutLMModel(LayoutLMPreTrainedModel):
def __init__(self, config): def __init__(self, config):
super(LayoutLMModel, self).__init__(config) super().__init__(config)
self.config = config self.config = config
self.embeddings = LayoutLMEmbeddings(config) self.embeddings = LayoutLMEmbeddings(config)

View File

@ -52,7 +52,7 @@ class LayoutLMv2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.""" """Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config): def __init__(self, config):
super(LayoutLMv2Embeddings, self).__init__() super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)

View File

@ -648,7 +648,7 @@ class LxmertEncoder(nn.Module):
class LxmertPooler(nn.Module): class LxmertPooler(nn.Module):
def __init__(self, config): def __init__(self, config):
super(LxmertPooler, self).__init__() super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh() self.activation = nn.Tanh()
@ -663,7 +663,7 @@ class LxmertPooler(nn.Module):
class LxmertPredictionHeadTransform(nn.Module): class LxmertPredictionHeadTransform(nn.Module):
def __init__(self, config): def __init__(self, config):
super(LxmertPredictionHeadTransform, self).__init__() super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] self.transform_act_fn = ACT2FN[config.hidden_act]
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
@ -677,7 +677,7 @@ class LxmertPredictionHeadTransform(nn.Module):
class LxmertLMPredictionHead(nn.Module): class LxmertLMPredictionHead(nn.Module):
def __init__(self, config, lxmert_model_embedding_weights): def __init__(self, config, lxmert_model_embedding_weights):
super(LxmertLMPredictionHead, self).__init__() super().__init__()
self.transform = LxmertPredictionHeadTransform(config) self.transform = LxmertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is # The output weights are the same as the input embeddings, but there is
@ -744,7 +744,7 @@ class LxmertVisualObjHead(nn.Module):
class LxmertPreTrainingHeads(nn.Module): class LxmertPreTrainingHeads(nn.Module):
def __init__(self, config, lxmert_model_embedding_weights): def __init__(self, config, lxmert_model_embedding_weights):
super(LxmertPreTrainingHeads, self).__init__() super().__init__()
self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2) self.seq_relationship = nn.Linear(config.hidden_size, 2)

View File

@ -52,7 +52,7 @@ class XPathEmbeddings(nn.Module):
""" """
def __init__(self, config): def __init__(self, config):
super(XPathEmbeddings, self).__init__() super().__init__()
self.max_depth = config.max_depth self.max_depth = config.max_depth
self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size) self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size)
@ -116,7 +116,7 @@ class MarkupLMEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.""" """Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config): def __init__(self, config):
super(MarkupLMEmbeddings, self).__init__() super().__init__()
self.config = config self.config = config
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
@ -724,9 +724,7 @@ class MarkupLMPreTrainedModel(PreTrainedModel):
@classmethod @classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
return super(MarkupLMPreTrainedModel, cls).from_pretrained( return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
pretrained_model_name_or_path, *model_args, **kwargs
)
@auto_docstring @auto_docstring

View File

@ -2533,7 +2533,7 @@ class Conv2dSamePadding(nn.Conv2d):
""" """
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super(Conv2dSamePadding, self).__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.zero_pad_2d = nn.ZeroPad2d( self.zero_pad_2d = nn.ZeroPad2d(
reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]]) reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
) )

View File

@ -77,7 +77,7 @@ class Conv1dSubsampler(nn.Module):
""" """
def __init__(self, config): def __init__(self, config):
super(Conv1dSubsampler, self).__init__() super().__init__()
self.config = config self.config = config
self.num_layers = config.num_conv_layers self.num_layers = config.num_conv_layers
self.in_channels = config.input_feat_per_channel * config.input_channels self.in_channels = config.input_feat_per_channel * config.input_channels

View File

@ -476,7 +476,7 @@ class TFSwinDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None, scale_by_keep: bool = True, **kwargs) -> None: def __init__(self, drop_prob: Optional[float] = None, scale_by_keep: bool = True, **kwargs) -> None:
super(TFSwinDropPath, self).__init__(**kwargs) super().__init__(**kwargs)
self.drop_prob = drop_prob self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep self.scale_by_keep = scale_by_keep

View File

@ -1871,7 +1871,7 @@ class ProductIndexMap(IndexMap):
if outer_index.batch_dims != inner_index.batch_dims: if outer_index.batch_dims != inner_index.batch_dims:
raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.")
super(ProductIndexMap, self).__init__( super().__init__(
indices=( indices=(
inner_index.indices inner_index.indices
+ outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype)

View File

@ -847,7 +847,7 @@ class UdopBlock(nn.Module):
class UdopCellEmbeddings(nn.Module): class UdopCellEmbeddings(nn.Module):
def __init__(self, max_2d_position_embeddings=501, hidden_size=1024): def __init__(self, max_2d_position_embeddings=501, hidden_size=1024):
super(UdopCellEmbeddings, self).__init__() super().__init__()
self.max_2d_position_embeddings = max_2d_position_embeddings self.max_2d_position_embeddings = max_2d_position_embeddings
self.x_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) self.x_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size)
@ -911,7 +911,7 @@ class RelativePositionBiasBase(nn.Module, ABC):
prefix_bucket=False, prefix_bucket=False,
expand=False, expand=False,
): ):
super(RelativePositionBiasBase, self).__init__() super().__init__()
self.prefix_bucket = prefix_bucket self.prefix_bucket = prefix_bucket
self.augmentation = augmentation self.augmentation = augmentation
self.level = level self.level = level
@ -1499,7 +1499,7 @@ class UdopModel(UdopPreTrainedModel):
] ]
def __init__(self, config): def __init__(self, config):
super(UdopModel, self).__init__(config) super().__init__(config)
# text and image embeddings # text and image embeddings
self.shared = nn.Embedding(config.vocab_size, config.d_model) self.shared = nn.Embedding(config.vocab_size, config.d_model)
@ -1695,7 +1695,7 @@ class UdopForConditionalGeneration(UdopPreTrainedModel, GenerationMixin):
] ]
def __init__(self, config): def __init__(self, config):
super(UdopForConditionalGeneration, self).__init__(config) super().__init__(config)
# text and image embeddings # text and image embeddings
self.shared = nn.Embedding(config.vocab_size, config.d_model) self.shared = nn.Embedding(config.vocab_size, config.d_model)

View File

@ -1670,7 +1670,7 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels

View File

@ -2203,7 +2203,7 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels

View File

@ -1358,7 +1358,7 @@ class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel):
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels

View File

@ -1751,7 +1751,7 @@ class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedMo
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels

View File

@ -1514,7 +1514,7 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel):
class AMSoftmaxLoss(nn.Module): class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__() super().__init__()
self.scale = scale self.scale = scale
self.margin = margin self.margin = margin
self.num_labels = num_labels self.num_labels = num_labels