From 0a53df1a77a9978ddf958e1f8f7a257181f180cb Mon Sep 17 00:00:00 2001 From: Yuanyuan Chen Date: Thu, 19 Jun 2025 19:45:51 +0800 Subject: [PATCH] Fix unnecessary super calls (#38897) Signed-off-by: cyy --- src/transformers/models/bit/modeling_bit.py | 2 +- src/transformers/models/blenderbot/modeling_blenderbot.py | 6 ++---- src/transformers/models/bros/modeling_bros.py | 6 +++--- .../models/data2vec/modeling_data2vec_audio.py | 2 +- .../models/deprecated/ernie_m/modeling_ernie_m.py | 4 ++-- src/transformers/models/granitemoe/modeling_granitemoe.py | 2 +- .../models/granitemoehybrid/modeling_granitemoehybrid.py | 4 ++-- .../models/granitemoeshared/modeling_granitemoeshared.py | 4 ++-- .../models/granitemoeshared/modular_granitemoeshared.py | 2 +- src/transformers/models/jetmoe/modeling_jetmoe.py | 4 ++-- src/transformers/models/layoutlm/modeling_layoutlm.py | 4 ++-- src/transformers/models/layoutlmv2/modeling_layoutlmv2.py | 2 +- src/transformers/models/lxmert/modeling_lxmert.py | 8 ++++---- src/transformers/models/markuplm/modeling_markuplm.py | 8 +++----- src/transformers/models/perceiver/modeling_perceiver.py | 2 +- .../models/speech_to_text/modeling_speech_to_text.py | 2 +- src/transformers/models/swin/modeling_tf_swin.py | 2 +- src/transformers/models/tapas/modeling_tf_tapas.py | 2 +- src/transformers/models/udop/modeling_udop.py | 8 ++++---- .../models/unispeech_sat/modeling_unispeech_sat.py | 2 +- src/transformers/models/wav2vec2/modeling_wav2vec2.py | 2 +- .../models/wav2vec2_bert/modeling_wav2vec2_bert.py | 2 +- .../wav2vec2_conformer/modeling_wav2vec2_conformer.py | 2 +- src/transformers/models/wavlm/modeling_wavlm.py | 2 +- 24 files changed, 40 insertions(+), 44 deletions(-) diff --git a/src/transformers/models/bit/modeling_bit.py b/src/transformers/models/bit/modeling_bit.py index 1a7a016f9cd..e6e5f68a98a 100644 --- a/src/transformers/models/bit/modeling_bit.py +++ b/src/transformers/models/bit/modeling_bit.py @@ -135,7 +135,7 @@ class BitGroupNormActivation(nn.GroupNorm): """ def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True): - super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine) + super().__init__(config.num_groups, num_channels, eps=eps, affine=affine) if apply_activation: self.activation = ACT2FN[config.hidden_act] else: diff --git a/src/transformers/models/blenderbot/modeling_blenderbot.py b/src/transformers/models/blenderbot/modeling_blenderbot.py index 0d699d01b59..6be0c98869a 100755 --- a/src/transformers/models/blenderbot/modeling_blenderbot.py +++ b/src/transformers/models/blenderbot/modeling_blenderbot.py @@ -1183,7 +1183,7 @@ class BlenderbotModel(BlenderbotPreTrainedModel): ) return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path) - return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) + return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) def get_input_embeddings(self): return self.shared @@ -1344,9 +1344,7 @@ class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel, GenerationMi ) return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path) - return super(BlenderbotForConditionalGeneration, cls).from_pretrained( - pretrained_model_name_or_path, *model_args, **kwargs - ) + return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) def get_encoder(self): return self.model.get_encoder() diff --git a/src/transformers/models/bros/modeling_bros.py b/src/transformers/models/bros/modeling_bros.py index 94d3a9d985d..33d1a44a2fe 100755 --- a/src/transformers/models/bros/modeling_bros.py +++ b/src/transformers/models/bros/modeling_bros.py @@ -74,7 +74,7 @@ class BrosPositionalEmbedding1D(nn.Module): # Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15 def __init__(self, config): - super(BrosPositionalEmbedding1D, self).__init__() + super().__init__() self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d @@ -93,7 +93,7 @@ class BrosPositionalEmbedding1D(nn.Module): class BrosPositionalEmbedding2D(nn.Module): def __init__(self, config): - super(BrosPositionalEmbedding2D, self).__init__() + super().__init__() self.dim_bbox = config.dim_bbox self.x_pos_emb = BrosPositionalEmbedding1D(config) @@ -112,7 +112,7 @@ class BrosPositionalEmbedding2D(nn.Module): class BrosBboxEmbeddings(nn.Module): def __init__(self, config): - super(BrosBboxEmbeddings, self).__init__() + super().__init__() self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config) self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False) diff --git a/src/transformers/models/data2vec/modeling_data2vec_audio.py b/src/transformers/models/data2vec/modeling_data2vec_audio.py index 940af308cd7..9c62b5fc8c1 100755 --- a/src/transformers/models/data2vec/modeling_data2vec_audio.py +++ b/src/transformers/models/data2vec/modeling_data2vec_audio.py @@ -1229,7 +1229,7 @@ class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel): class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels diff --git a/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py b/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py index 9f0d8e676ad..f57754cc585 100755 --- a/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py +++ b/src/transformers/models/deprecated/ernie_m/modeling_ernie_m.py @@ -484,7 +484,7 @@ ERNIE_M_INPUTS_DOCSTRING = r""" ) class ErnieMModel(ErnieMPreTrainedModel): def __init__(self, config, add_pooling_layer=True): - super(ErnieMModel, self).__init__(config) + super().__init__(config) self.initializer_range = config.initializer_range self.embeddings = ErnieMEmbeddings(config) self.encoder = ErnieMEncoder(config) @@ -964,7 +964,7 @@ class ErnieMForQuestionAnswering(ErnieMPreTrainedModel): ) class ErnieMForInformationExtraction(ErnieMPreTrainedModel): def __init__(self, config): - super(ErnieMForInformationExtraction, self).__init__(config) + super().__init__(config) self.ernie_m = ErnieMModel(config) self.linear_start = nn.Linear(config.hidden_size, 1) self.linear_end = nn.Linear(config.hidden_size, 1) diff --git a/src/transformers/models/granitemoe/modeling_granitemoe.py b/src/transformers/models/granitemoe/modeling_granitemoe.py index ffaf86697a6..151057dd997 100644 --- a/src/transformers/models/granitemoe/modeling_granitemoe.py +++ b/src/transformers/models/granitemoe/modeling_granitemoe.py @@ -324,7 +324,7 @@ class GraniteMoeMoE(nn.Module): """ def __init__(self, config: GraniteMoeConfig): - super(GraniteMoeMoE, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.intermediate_size diff --git a/src/transformers/models/granitemoehybrid/modeling_granitemoehybrid.py b/src/transformers/models/granitemoehybrid/modeling_granitemoehybrid.py index 62af013448c..0cd453c6e89 100644 --- a/src/transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +++ b/src/transformers/models/granitemoehybrid/modeling_granitemoehybrid.py @@ -856,7 +856,7 @@ class GraniteMoeHybridMLP(nn.Module): """ def __init__(self, config: GraniteMoeHybridConfig): - super(GraniteMoeHybridMLP, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.shared_intermediate_size @@ -995,7 +995,7 @@ class GraniteMoeHybridMoE(nn.Module): """ def __init__(self, config: GraniteMoeHybridConfig): - super(GraniteMoeHybridMoE, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.intermediate_size diff --git a/src/transformers/models/granitemoeshared/modeling_granitemoeshared.py b/src/transformers/models/granitemoeshared/modeling_granitemoeshared.py index 8cd13f8a8c5..82e997d462a 100644 --- a/src/transformers/models/granitemoeshared/modeling_granitemoeshared.py +++ b/src/transformers/models/granitemoeshared/modeling_granitemoeshared.py @@ -56,7 +56,7 @@ class GraniteMoeSharedMLP(nn.Module): """ def __init__(self, config: GraniteMoeSharedConfig): - super(GraniteMoeSharedMLP, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.shared_intermediate_size @@ -195,7 +195,7 @@ class GraniteMoeSharedMoE(nn.Module): """ def __init__(self, config: GraniteMoeSharedConfig): - super(GraniteMoeSharedMoE, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.intermediate_size diff --git a/src/transformers/models/granitemoeshared/modular_granitemoeshared.py b/src/transformers/models/granitemoeshared/modular_granitemoeshared.py index 45dfa59ea7c..d8e644b7b98 100644 --- a/src/transformers/models/granitemoeshared/modular_granitemoeshared.py +++ b/src/transformers/models/granitemoeshared/modular_granitemoeshared.py @@ -43,7 +43,7 @@ class GraniteMoeSharedMLP(nn.Module): """ def __init__(self, config: GraniteMoeSharedConfig): - super(GraniteMoeSharedMLP, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.shared_intermediate_size diff --git a/src/transformers/models/jetmoe/modeling_jetmoe.py b/src/transformers/models/jetmoe/modeling_jetmoe.py index ab843099c54..ccee5f34a50 100644 --- a/src/transformers/models/jetmoe/modeling_jetmoe.py +++ b/src/transformers/models/jetmoe/modeling_jetmoe.py @@ -233,7 +233,7 @@ class JetMoeMoE(nn.Module): """ def __init__(self, config: JetMoeConfig): - super(JetMoeMoE, self).__init__() + super().__init__() self.input_size = config.hidden_size self.hidden_size = config.intermediate_size @@ -291,7 +291,7 @@ class JetMoeMoA(nn.Module): """ def __init__(self, config: JetMoeConfig): - super(JetMoeMoA, self).__init__() + super().__init__() self.num_experts = config.num_local_experts self.input_size = config.hidden_size diff --git a/src/transformers/models/layoutlm/modeling_layoutlm.py b/src/transformers/models/layoutlm/modeling_layoutlm.py index 6ce2e7e2dcf..e4fb25523a7 100644 --- a/src/transformers/models/layoutlm/modeling_layoutlm.py +++ b/src/transformers/models/layoutlm/modeling_layoutlm.py @@ -47,7 +47,7 @@ class LayoutLMEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): - super(LayoutLMEmbeddings, self).__init__() + super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) @@ -635,7 +635,7 @@ class LayoutLMPreTrainedModel(PreTrainedModel): @auto_docstring class LayoutLMModel(LayoutLMPreTrainedModel): def __init__(self, config): - super(LayoutLMModel, self).__init__(config) + super().__init__(config) self.config = config self.embeddings = LayoutLMEmbeddings(config) diff --git a/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py b/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py index fa89c6c45b4..7a82375d1ff 100755 --- a/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py +++ b/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py @@ -52,7 +52,7 @@ class LayoutLMv2Embeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): - super(LayoutLMv2Embeddings, self).__init__() + super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) diff --git a/src/transformers/models/lxmert/modeling_lxmert.py b/src/transformers/models/lxmert/modeling_lxmert.py index 252fe2f40d0..44e60314403 100644 --- a/src/transformers/models/lxmert/modeling_lxmert.py +++ b/src/transformers/models/lxmert/modeling_lxmert.py @@ -648,7 +648,7 @@ class LxmertEncoder(nn.Module): class LxmertPooler(nn.Module): def __init__(self, config): - super(LxmertPooler, self).__init__() + super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() @@ -663,7 +663,7 @@ class LxmertPooler(nn.Module): class LxmertPredictionHeadTransform(nn.Module): def __init__(self, config): - super(LxmertPredictionHeadTransform, self).__init__() + super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) @@ -677,7 +677,7 @@ class LxmertPredictionHeadTransform(nn.Module): class LxmertLMPredictionHead(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): - super(LxmertLMPredictionHead, self).__init__() + super().__init__() self.transform = LxmertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is @@ -744,7 +744,7 @@ class LxmertVisualObjHead(nn.Module): class LxmertPreTrainingHeads(nn.Module): def __init__(self, config, lxmert_model_embedding_weights): - super(LxmertPreTrainingHeads, self).__init__() + super().__init__() self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) self.seq_relationship = nn.Linear(config.hidden_size, 2) diff --git a/src/transformers/models/markuplm/modeling_markuplm.py b/src/transformers/models/markuplm/modeling_markuplm.py index 8ce6b5ed5ec..47e57b00172 100755 --- a/src/transformers/models/markuplm/modeling_markuplm.py +++ b/src/transformers/models/markuplm/modeling_markuplm.py @@ -52,7 +52,7 @@ class XPathEmbeddings(nn.Module): """ def __init__(self, config): - super(XPathEmbeddings, self).__init__() + super().__init__() self.max_depth = config.max_depth self.xpath_unitseq2_embeddings = nn.Linear(config.xpath_unit_hidden_size * self.max_depth, config.hidden_size) @@ -116,7 +116,7 @@ class MarkupLMEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): - super(MarkupLMEmbeddings, self).__init__() + super().__init__() self.config = config self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) @@ -724,9 +724,7 @@ class MarkupLMPreTrainedModel(PreTrainedModel): @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): - return super(MarkupLMPreTrainedModel, cls).from_pretrained( - pretrained_model_name_or_path, *model_args, **kwargs - ) + return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @auto_docstring diff --git a/src/transformers/models/perceiver/modeling_perceiver.py b/src/transformers/models/perceiver/modeling_perceiver.py index 1a6f65cf6c4..00239833cb4 100755 --- a/src/transformers/models/perceiver/modeling_perceiver.py +++ b/src/transformers/models/perceiver/modeling_perceiver.py @@ -2533,7 +2533,7 @@ class Conv2dSamePadding(nn.Conv2d): """ def __init__(self, *args, **kwargs): - super(Conv2dSamePadding, self).__init__(*args, **kwargs) + super().__init__(*args, **kwargs) self.zero_pad_2d = nn.ZeroPad2d( reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]]) ) diff --git a/src/transformers/models/speech_to_text/modeling_speech_to_text.py b/src/transformers/models/speech_to_text/modeling_speech_to_text.py index d9fbf2faec9..375392077c6 100755 --- a/src/transformers/models/speech_to_text/modeling_speech_to_text.py +++ b/src/transformers/models/speech_to_text/modeling_speech_to_text.py @@ -77,7 +77,7 @@ class Conv1dSubsampler(nn.Module): """ def __init__(self, config): - super(Conv1dSubsampler, self).__init__() + super().__init__() self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels diff --git a/src/transformers/models/swin/modeling_tf_swin.py b/src/transformers/models/swin/modeling_tf_swin.py index b5dd36f1cac..b64f0b832ff 100644 --- a/src/transformers/models/swin/modeling_tf_swin.py +++ b/src/transformers/models/swin/modeling_tf_swin.py @@ -476,7 +476,7 @@ class TFSwinDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None, scale_by_keep: bool = True, **kwargs) -> None: - super(TFSwinDropPath, self).__init__(**kwargs) + super().__init__(**kwargs) self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep diff --git a/src/transformers/models/tapas/modeling_tf_tapas.py b/src/transformers/models/tapas/modeling_tf_tapas.py index 5f0da5e5192..74cbfd453d8 100644 --- a/src/transformers/models/tapas/modeling_tf_tapas.py +++ b/src/transformers/models/tapas/modeling_tf_tapas.py @@ -1871,7 +1871,7 @@ class ProductIndexMap(IndexMap): if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") - super(ProductIndexMap, self).__init__( + super().__init__( indices=( inner_index.indices + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) diff --git a/src/transformers/models/udop/modeling_udop.py b/src/transformers/models/udop/modeling_udop.py index 79c5c2ca399..ba3c0080a27 100644 --- a/src/transformers/models/udop/modeling_udop.py +++ b/src/transformers/models/udop/modeling_udop.py @@ -847,7 +847,7 @@ class UdopBlock(nn.Module): class UdopCellEmbeddings(nn.Module): def __init__(self, max_2d_position_embeddings=501, hidden_size=1024): - super(UdopCellEmbeddings, self).__init__() + super().__init__() self.max_2d_position_embeddings = max_2d_position_embeddings self.x_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) @@ -911,7 +911,7 @@ class RelativePositionBiasBase(nn.Module, ABC): prefix_bucket=False, expand=False, ): - super(RelativePositionBiasBase, self).__init__() + super().__init__() self.prefix_bucket = prefix_bucket self.augmentation = augmentation self.level = level @@ -1499,7 +1499,7 @@ class UdopModel(UdopPreTrainedModel): ] def __init__(self, config): - super(UdopModel, self).__init__(config) + super().__init__(config) # text and image embeddings self.shared = nn.Embedding(config.vocab_size, config.d_model) @@ -1695,7 +1695,7 @@ class UdopForConditionalGeneration(UdopPreTrainedModel, GenerationMixin): ] def __init__(self, config): - super(UdopForConditionalGeneration, self).__init__(config) + super().__init__(config) # text and image embeddings self.shared = nn.Embedding(config.vocab_size, config.d_model) diff --git a/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py b/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py index 72375f8e904..1ecb418c140 100755 --- a/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py +++ b/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py @@ -1670,7 +1670,7 @@ class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel): class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels diff --git a/src/transformers/models/wav2vec2/modeling_wav2vec2.py b/src/transformers/models/wav2vec2/modeling_wav2vec2.py index 9ed86d274e2..6057e0c9fb2 100755 --- a/src/transformers/models/wav2vec2/modeling_wav2vec2.py +++ b/src/transformers/models/wav2vec2/modeling_wav2vec2.py @@ -2203,7 +2203,7 @@ class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel): class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels diff --git a/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py b/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py index b8a60f3d3d0..f938fa20bfd 100644 --- a/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +++ b/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py @@ -1358,7 +1358,7 @@ class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel): class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels diff --git a/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py b/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py index 70042f7b93b..eb28f7f9554 100644 --- a/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +++ b/src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py @@ -1751,7 +1751,7 @@ class Wav2Vec2ConformerForAudioFrameClassification(Wav2Vec2ConformerPreTrainedMo class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels diff --git a/src/transformers/models/wavlm/modeling_wavlm.py b/src/transformers/models/wavlm/modeling_wavlm.py index d718d4958a1..bb9c15002b2 100755 --- a/src/transformers/models/wavlm/modeling_wavlm.py +++ b/src/transformers/models/wavlm/modeling_wavlm.py @@ -1514,7 +1514,7 @@ class WavLMForAudioFrameClassification(WavLMPreTrainedModel): class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): - super(AMSoftmaxLoss, self).__init__() + super().__init__() self.scale = scale self.margin = margin self.num_labels = num_labels