mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* start adding tie encoder to decoder functionality * finish model tying * make style * Apply suggestions from code review * fix t5 list including cross attention * apply sams suggestions * Update src/transformers/modeling_encoder_decoder.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * add max depth break point Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
572 lines
22 KiB
Python
572 lines
22 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
from .test_modeling_bert import BertModelTester
|
|
from .test_modeling_common import ids_tensor
|
|
from .test_modeling_gpt2 import GPT2ModelTester
|
|
from .test_modeling_roberta import RobertaModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import (
|
|
BertModel,
|
|
BertLMHeadModel,
|
|
GPT2LMHeadModel,
|
|
RobertaModel,
|
|
RobertaForCausalLM,
|
|
EncoderDecoderModel,
|
|
EncoderDecoderConfig,
|
|
)
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
@require_torch
|
|
class EncoderDecoderMixin:
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
pass
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pass
|
|
|
|
def get_pretrained_model(self):
|
|
pass
|
|
|
|
def check_encoder_decoder_model_from_pretrained_configs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
|
|
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
|
|
|
|
enc_dec_model = EncoderDecoderModel(encoder_decoder_config)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
|
|
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
|
|
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def check_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
|
|
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
|
|
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
encoder_outputs = (encoder_hidden_states,)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def check_encoder_decoder_model_from_pretrained(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
|
|
enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def check_save_and_load(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
enc_dec_model.save_pretrained(tmpdirname)
|
|
EncoderDecoderModel.from_pretrained(tmpdirname)
|
|
|
|
after_outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def check_save_and_load_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
|
|
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
|
|
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
|
|
EncoderDecoderModel.from_encoder_decoder_pretrained(
|
|
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
|
|
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
|
|
)
|
|
|
|
after_outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def check_encoder_decoder_model_labels(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
labels,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
labels=labels,
|
|
)
|
|
|
|
mlm_loss = outputs_encoder_decoder[0]
|
|
# check that backprop works
|
|
mlm_loss.backward()
|
|
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def check_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
|
|
# Bert does not have a bos token id, so use pad_token_id instead
|
|
generated_output = enc_dec_model.generate(
|
|
input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
|
|
)
|
|
self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))
|
|
|
|
def create_and_check_encoder_decoder_shared_weights(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
labels,
|
|
**kwargs
|
|
):
|
|
torch.manual_seed(0)
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
# load state dict copies weights but does not tie them
|
|
decoder_state_dict = model.decoder._modules[model.decoder.base_model_prefix].state_dict()
|
|
model.encoder.load_state_dict(decoder_state_dict, strict=False)
|
|
|
|
torch.manual_seed(0)
|
|
tied_encoder_model, tied_decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
config = EncoderDecoderConfig.from_encoder_decoder_configs(
|
|
tied_encoder_model.config, tied_decoder_model.config, tie_encoder_decoder=True
|
|
)
|
|
tied_model = EncoderDecoderModel(encoder=tied_encoder_model, decoder=tied_decoder_model, config=config)
|
|
tied_model.to(torch_device)
|
|
tied_model.eval()
|
|
|
|
model_result = model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
tied_model_result = tied_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
# check that models has less parameters
|
|
self.assertLess(sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()))
|
|
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
|
|
|
|
# check that outputs are equal
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
|
|
)
|
|
)
|
|
|
|
# check that outputs after saving and loading are equal
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
tied_model.save_pretrained(tmpdirname)
|
|
tied_model = EncoderDecoderModel.from_pretrained(tmpdirname)
|
|
tied_model.to(torch_device)
|
|
tied_model.eval()
|
|
|
|
# check that models has less parameters
|
|
self.assertLess(
|
|
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
|
|
)
|
|
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
|
|
|
|
tied_model_result = tied_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
# check that outputs are equal
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
|
|
)
|
|
)
|
|
|
|
def test_encoder_decoder_model(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_from_pretrained_configs(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict)
|
|
|
|
def test_save_and_load_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_save_and_load(**input_ids_dict)
|
|
|
|
def test_save_and_load_from_encoder_decoder_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_labels(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_labels(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_generate(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_generate(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_shared_weights(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.create_and_check_encoder_decoder_shared_weights(**input_ids_dict)
|
|
|
|
@slow
|
|
def test_real_model_save_load_from_pretrained(self):
|
|
model_2 = self.get_pretrained_model()
|
|
model_2.to(torch_device)
|
|
input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
|
|
decoder_input_ids = ids_tensor([13, 1], model_2.config.encoder.vocab_size)
|
|
attention_mask = ids_tensor([13, 5], vocab_size=2)
|
|
with torch.no_grad():
|
|
outputs = model_2(input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask,)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
model_2.save_pretrained(tmp_dirname)
|
|
model_1 = EncoderDecoderModel.from_pretrained(tmp_dirname)
|
|
model_1.to(torch_device)
|
|
|
|
after_outputs = model_1(
|
|
input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
|
|
class BertEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_pretrained_model(self):
|
|
return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "bert-base-cased")
|
|
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertLMHeadModel(decoder_config)
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
model_tester = BertModelTester(self)
|
|
encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = encoder_config_and_inputs
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_token_type_ids,
|
|
decoder_input_mask,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"labels": decoder_token_labels,
|
|
}
|
|
|
|
|
|
class RoBertaEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = RobertaModel(config)
|
|
decoder_model = RobertaForCausalLM(decoder_config)
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
model_tester = RobertaModelTester(self)
|
|
encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = encoder_config_and_inputs
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_token_type_ids,
|
|
decoder_input_mask,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"labels": decoder_token_labels,
|
|
}
|
|
|
|
def get_pretrained_model(self):
|
|
return EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
|
|
|
|
|
|
class GPT2EncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = GPT2LMHeadModel(decoder_config)
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
model_tester_encoder = BertModelTester(self, batch_size=13)
|
|
model_tester_decoder = GPT2ModelTester(self, batch_size=13)
|
|
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = encoder_config_and_inputs
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_input_mask,
|
|
decoder_head_mask,
|
|
decoder_token_type_ids,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
# disable cache for now
|
|
decoder_config.use_cache = False
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"labels": decoder_token_labels,
|
|
}
|
|
|
|
def get_pretrained_model(self):
|
|
return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2")
|
|
|
|
def test_encoder_decoder_model_shared_weights(self):
|
|
pass
|