transformers/docs/source/model_doc/wav2vec2.rst
Anton Lozhkov b6f332ecaf
Add Wav2Vec2 & Hubert ForSequenceClassification (#13153)
* Add hubert classifier + tests

* Add hubert classifier + tests

* Dummies for all classification tests

* Wav2Vec2 classifier + ER test

* Fix hubert integration tests

* Add hubert IC

* Pass tests for all classification tasks on Hubert

* Pass all tests + copies

* Move models to the SUPERB org
2021-08-27 20:52:51 +03:00

146 lines
5.7 KiB
ReStructuredText

..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Wav2Vec2
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Wav2Vec2 model was proposed in `wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
<https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
The abstract from the paper is the following:
*We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on
transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks
the speech input in the latent space and solves a contrastive task defined over a quantization of the latent
representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the
clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state
of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and
pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech
recognition with limited amounts of labeled data.*
Tips:
- Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
using :class:`~transformers.Wav2Vec2CTCTokenizer`.
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__.
Wav2Vec2Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2Config
:members:
Wav2Vec2CTCTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2CTCTokenizer
:members: __call__, save_vocabulary
Wav2Vec2FeatureExtractor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2FeatureExtractor
:members: __call__
Wav2Vec2Processor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2Processor
:members: __call__, pad, from_pretrained, save_pretrained, batch_decode, decode, as_target_processor
Wav2Vec2 specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput
:members:
.. autoclass:: transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput
:members:
.. autoclass:: transformers.models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2BaseModelOutput
:members:
.. autoclass:: transformers.models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2ForPreTrainingOutput
:members:
Wav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2Model
:members: forward
Wav2Vec2ForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2ForCTC
:members: forward
Wav2Vec2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2ForSequenceClassification
:members: forward
Wav2Vec2ForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Wav2Vec2ForPreTraining
:members: forward
TFWav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFWav2Vec2Model
:members: call
TFWav2Vec2ForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFWav2Vec2ForCTC
:members: call
FlaxWav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxWav2Vec2Model
:members: __call__
FlaxWav2Vec2ForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxWav2Vec2ForCTC
:members: __call__
FlaxWav2Vec2ForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxWav2Vec2ForPreTraining
:members: __call__