transformers/tests/test_tokenization_dpr.py
Quentin Lhoest fbd8792195
Add DPR model (#5279)
* beginning of dpr modeling

* wip

* implement forward

* remove biencoder + better init weights

* export dpr model to embed model for nlp lib

* add new api

* remove old code

* make style

* fix dumb typo

* don't load bert weights

* docs

* docs

* style

* move the `k` parameter

* fix init_weights

* add pretrained configs

* minor

* update config names

* style

* better config

* style

* clean code based on PR comments

* change Dpr to DPR

* fix config

* switch encoder config to a dict

* style

* inheritance -> composition

* add messages in assert startements

* add dpr reader tokenizer

* one tokenizer per model

* fix base_model_prefix

* fix imports

* typo

* add convert script

* docs

* change tokenizers conf names

* style

* change tokenizers conf names

* minor

* minor

* fix wrong names

* minor

* remove unused convert functions

* rename convert script

* use return_tensors in tokenizers

* remove n_questions dim

* move generate logic to tokenizer

* style

* add docs

* docs

* quality

* docs

* add tests

* style

* add tokenization tests

* DPR full tests

* Stay true to the attention mask building

* update docs

* missing param in bert input docs

* docs

* style

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2020-07-07 08:56:12 -04:00

90 lines
3.5 KiB
Python

# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.tokenization_dpr import (
DPRContextEncoderTokenizer,
DPRContextEncoderTokenizerFast,
DPRQuestionEncoderTokenizer,
DPRQuestionEncoderTokenizerFast,
DPRReaderOutput,
DPRReaderTokenizer,
DPRReaderTokenizerFast,
)
from transformers.tokenization_utils_base import BatchEncoding
from .test_tokenization_bert import BertTokenizationTest
from .utils import slow
class DPRContextEncoderTokenizationTest(BertTokenizationTest):
tokenizer_class = DPRContextEncoderTokenizer
def get_rust_tokenizer(self, **kwargs):
return DPRContextEncoderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
class DPRQuestionEncoderTokenizationTest(BertTokenizationTest):
tokenizer_class = DPRQuestionEncoderTokenizer
def get_rust_tokenizer(self, **kwargs):
return DPRQuestionEncoderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
class DPRReaderTokenizationTest(BertTokenizationTest):
tokenizer_class = DPRReaderTokenizer
def get_rust_tokenizer(self, **kwargs):
return DPRReaderTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
@slow
def test_decode_best_spans(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False)
input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3]
reader_input = BatchEncoding({"input_ids": input_ids})
start_logits = [[0] * len(input_ids[0])]
end_logits = [[0] * len(input_ids[0])]
relevance_logits = [0]
reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits)
start_index, end_index = 8, 9
start_logits[0][start_index] = 10
end_logits[0][end_index] = 10
predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output)
self.assertEqual(predicted_spans[0].start_index, start_index)
self.assertEqual(predicted_spans[0].end_index, end_index)
self.assertEqual(predicted_spans[0].doc_id, 0)
@slow
def test_call(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
text_3 = tokenizer.encode("text sequence", add_special_tokens=False)
expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3
encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"])
self.assertIn("input_ids", encoded_input)
self.assertIn("attention_mask", encoded_input)
self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids)