transformers/examples/translation/t5/evaluate_wmt.py
Sam Shleifer d714dfeaa8
[isort] add known 3rd party to setup.cfg (#4053)
* add known 3rd party to setup.cfg

* comment

* Update CONTRIBUTING.md

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
2020-04-28 17:12:00 -04:00

104 lines
3.6 KiB
Python

import argparse
from pathlib import Path
import torch
from sacrebleu import corpus_bleu
from tqdm import tqdm
from transformers import T5ForConditionalGeneration, T5Tokenizer
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def generate_translations(lns, output_file_path, model_size, batch_size, device):
model = T5ForConditionalGeneration.from_pretrained(model_size)
model.to(device)
tokenizer = T5Tokenizer.from_pretrained(model_size)
# update config with summarization specific params
task_specific_params = model.config.task_specific_params
if task_specific_params is not None:
model.config.update(task_specific_params.get("translation_en_to_de", {}))
with Path(output_file_path).open("w") as output_file:
for batch in tqdm(list(chunks(lns, batch_size))):
batch = [model.config.prefix + text for text in batch]
dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True)
input_ids = dct["input_ids"].to(device)
attention_mask = dct["attention_mask"].to(device)
translations = model.generate(input_ids=input_ids, attention_mask=attention_mask)
dec = [
tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in translations
]
for hypothesis in dec:
output_file.write(hypothesis + "\n")
def calculate_bleu_score(output_lns, refs_lns, score_path):
bleu = corpus_bleu(output_lns, [refs_lns])
result = "BLEU score: {}".format(bleu.score)
with Path(score_path).open("w") as score_file:
score_file.write(result)
def run_generate():
parser = argparse.ArgumentParser()
parser.add_argument(
"model_size",
type=str,
help="T5 model size, either 't5-small', 't5-base', 't5-large', 't5-3b', 't5-11b'. Defaults to 't5-base'.",
default="t5-base",
)
parser.add_argument(
"input_path", type=str, help="like wmt/newstest2014.en",
)
parser.add_argument(
"output_path", type=str, help="where to save translation",
)
parser.add_argument(
"reference_path", type=str, help="like wmt/newstest2014.de",
)
parser.add_argument(
"score_path", type=str, help="where to save the bleu score",
)
parser.add_argument(
"--batch_size", type=int, default=16, required=False, help="batch size: how many to summarize at a time",
)
parser.add_argument(
"--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.",
)
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
dash_pattern = (" ##AT##-##AT## ", "-")
# Read input lines into python
with open(args.input_path, "r") as input_file:
input_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in input_file.readlines()]
generate_translations(input_lns, args.output_path, args.model_size, args.batch_size, args.device)
# Read generated lines into python
with open(args.output_path, "r") as output_file:
output_lns = [x.strip() for x in output_file.readlines()]
# Read reference lines into python
with open(args.reference_path, "r") as reference_file:
refs_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in reference_file.readlines()]
calculate_bleu_score(output_lns, refs_lns, args.score_path)
if __name__ == "__main__":
run_generate()