mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-18 20:18:24 +06:00

* add known 3rd party to setup.cfg * comment * Update CONTRIBUTING.md Co-authored-by: Julien Chaumond <chaumond@gmail.com>
102 lines
3.5 KiB
Python
102 lines
3.5 KiB
Python
import argparse
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from rouge_score import rouge_scorer, scoring
|
|
from tqdm import tqdm
|
|
|
|
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
|
|
|
def chunks(lst, n):
|
|
"""Yield successive n-sized chunks from lst."""
|
|
for i in range(0, len(lst), n):
|
|
yield lst[i : i + n]
|
|
|
|
|
|
def generate_summaries(lns, output_file_path, model_size, batch_size, device):
|
|
output_file = Path(output_file_path).open("w")
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_size)
|
|
model.to(device)
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained(model_size)
|
|
|
|
# update config with summarization specific params
|
|
task_specific_params = model.config.task_specific_params
|
|
if task_specific_params is not None:
|
|
model.config.update(task_specific_params.get("summarization", {}))
|
|
|
|
for batch in tqdm(list(chunks(lns, batch_size))):
|
|
batch = [model.config.prefix + text for text in batch]
|
|
|
|
dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True)
|
|
input_ids = dct["input_ids"].to(device)
|
|
attention_mask = dct["attention_mask"].to(device)
|
|
|
|
summaries = model.generate(input_ids=input_ids, attention_mask=attention_mask)
|
|
dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summaries]
|
|
|
|
for hypothesis in dec:
|
|
output_file.write(hypothesis + "\n")
|
|
output_file.flush()
|
|
|
|
|
|
def calculate_rouge(output_lns, reference_lns, score_path):
|
|
score_file = Path(score_path).open("w")
|
|
scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True)
|
|
aggregator = scoring.BootstrapAggregator()
|
|
|
|
for reference_ln, output_ln in zip(reference_lns, output_lns):
|
|
scores = scorer.score(reference_ln, output_ln)
|
|
aggregator.add_scores(scores)
|
|
|
|
result = aggregator.aggregate()
|
|
score_file.write(
|
|
"ROUGE_1: \n{} \n\n ROUGE_2: \n{} \n\n ROUGE_L: \n{} \n\n".format(
|
|
result["rouge1"], result["rouge2"], result["rougeL"]
|
|
)
|
|
)
|
|
|
|
|
|
def run_generate():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"model_size",
|
|
type=str,
|
|
help="T5 model size, either 't5-small', 't5-base', 't5-large', 't5-3b', 't5-11b'. Defaults to 't5-base'.",
|
|
default="t5-base",
|
|
)
|
|
parser.add_argument(
|
|
"input_path", type=str, help="like cnn_dm/test_articles_input.txt",
|
|
)
|
|
parser.add_argument(
|
|
"output_path", type=str, help="where to save summaries",
|
|
)
|
|
parser.add_argument("reference_path", type=str, help="like cnn_dm/test_reference_summaries.txt")
|
|
parser.add_argument(
|
|
"score_path", type=str, help="where to save the rouge score",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size", type=int, default=8, required=False, help="batch size: how many to summarize at a time",
|
|
)
|
|
parser.add_argument(
|
|
"--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
|
|
source_lns = [x.rstrip() for x in open(args.input_path).readlines()]
|
|
|
|
generate_summaries(source_lns, args.output_path, args.model_size, args.batch_size, args.device)
|
|
|
|
output_lns = [x.rstrip() for x in open(args.output_path).readlines()]
|
|
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()]
|
|
|
|
calculate_rouge(output_lns, reference_lns, args.score_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_generate()
|