transformers/tests/models/cohere2/test_modeling_cohere2.py
Yao Matrix fb82a98717
enable large_gpu and torchao cases on XPU (#38355)
* cohere2 done

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* enable torchao cases on XPU

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* rename

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: Matrix YAO <matrix.yao@intel.com>
2025-05-28 10:30:16 +02:00

313 lines
14 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Cohere2 model."""
import unittest
import pytest
from packaging import version
from parameterized import parameterized
from pytest import mark
from transformers import AutoModelForCausalLM, AutoTokenizer, Cohere2Config, is_torch_available, pipeline
from transformers.generation.configuration_utils import GenerationConfig
from transformers.testing_utils import (
Expectations,
require_flash_attn,
require_read_token,
require_torch,
require_torch_large_accelerator,
slow,
torch_device,
)
from ...models.cohere.test_modeling_cohere import CohereModelTest, CohereModelTester
from ...test_configuration_common import ConfigTester
if is_torch_available():
import torch
from transformers import (
Cohere2ForCausalLM,
Cohere2Model,
)
class Cohere2ModelTester(CohereModelTester):
config_class = Cohere2Config
if is_torch_available():
model_class = Cohere2Model
for_causal_lm_class = Cohere2ForCausalLM
@require_torch
class Cohere2ModelTest(CohereModelTest, unittest.TestCase):
all_model_classes = (Cohere2Model, Cohere2ForCausalLM) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": Cohere2Model,
"text-generation": Cohere2ForCausalLM,
}
if is_torch_available()
else {}
)
_is_stateful = True
def setUp(self):
self.model_tester = Cohere2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Cohere2Config, hidden_size=37)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@unittest.skip("Cohere2's forcefully disables sdpa due to softcapping")
def test_sdpa_can_dispatch_non_composite_models(self):
pass
@unittest.skip("Cohere2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
@parameterized.expand([("random",), ("same",)])
@pytest.mark.generate
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@pytest.mark.generate
@unittest.skip("Cohere2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Cohere2 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip("Cohere2 has HybridCache and doesn't support progressive generation using input embeds.")
def test_generate_continue_from_inputs_embeds(self):
pass
@slow
@require_read_token
@require_torch_large_accelerator
class Cohere2IntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
def test_model_bf16(self):
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
EXPECTED_TEXTS = [
"<BOS_TOKEN>Hello I am doing a project for a school assignment and I need to create a website for a fictional company. I have",
"<PAD><PAD><BOS_TOKEN>Hi today I'm going to show you how to make a simple and easy to make a chocolate cake.\n",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_fp16(self):
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
# fmt: off
EXPECTED_TEXTS = Expectations(
{
("xpu", 3): ["<BOS_TOKEN>Hello I am doing a project for my school and I need to create a website for a fictional company. I have the", "<PAD><PAD><BOS_TOKEN>Hi today I'm going to show you how to make a simple and easy to make a chocolate cake.\n"],
("cuda", 7): ["<BOS_TOKEN>Hello I am doing a project for a school assignment and I need to create a website for a fictional company. I have", "<PAD><PAD><BOS_TOKEN>Hi today I'm going to show you how to make a simple and easy to make a chocolate cake.\n",],
}
)
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
# fmt: on
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXT)
def test_model_pipeline_bf16(self):
# See https://github.com/huggingface/transformers/pull/31747 -- pipeline was broken for Cohere2 before this PR
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
# EXPECTED_TEXTS should match the same non-pipeline test, minus the special tokens
EXPECTED_TEXTS = [
"Hello I am doing a project for a school assignment and I need to create a website for a fictional company. I have",
"Hi today I'm going to show you how to make a simple and easy to make a chocolate cake.\n",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flex_attention"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = pipe(self.input_text, max_new_tokens=20, do_sample=False, padding=True)
self.assertEqual(output[0][0]["generated_text"], EXPECTED_TEXTS[0])
self.assertEqual(output[1][0]["generated_text"], EXPECTED_TEXTS[1])
@require_flash_attn
@mark.flash_attn_test
def test_model_flash_attn(self):
# See https://github.com/huggingface/transformers/issues/31953 --- flash attn was generating garbage for Gemma2, especially in long context
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
EXPECTED_TEXTS = [
'<BOS_TOKEN>Hello I am doing a project for my school and I need to create a website for a fictional company. I have the logo and the name of the company. I need a website that is simple and easy to navigate. I need a home page, about us, services, contact us, and a gallery. I need the website to be responsive and I need it to be able to be hosted on a server. I need the website to be done in a week. I need the website to be done in HTML,',
"<PAD><PAD><BOS_TOKEN>Hi today I'm going to show you how to make a simple and easy to make a chocolate cake.\n\nThis recipe is very simple and easy to make.\n\nYou will need:\n\n* 2 cups of flour\n* 1 cup of sugar\n* 1/2 cup of cocoa powder\n* 1 teaspoon of baking powder\n* 1 teaspoon of baking soda\n* 1/2 teaspoon of salt\n* 2 eggs\n* 1 cup of milk\n",
] # fmt: skip
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="flash_attention_2", torch_dtype="float16"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=100, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.5.0"):
self.skipTest(reason="This test requires torch >= 2.5 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
# fmt: off
EXPECTED_TEXT_COMPLETIONS = Expectations(
{
("xpu", 3): ["Hello I am doing a project for a friend and I am stuck on a few things. I have a 2004 Ford F-"],
("cuda", 7): ["Hello I am doing a project on the effects of social media on mental health. I have a few questions. 1. What is the relationship",],
}
)
EXPECTED_TEXT_COMPLETION = EXPECTED_TEXT_COMPLETIONS.get_expectation()
# fmt: on
tokenizer = AutoTokenizer.from_pretrained(model_id, pad_token="<PAD>", padding_side="right")
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = AutoModelForCausalLM.from_pretrained(
"CohereForAI/c4ai-command-r7b-12-2024",
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=30,
cache_config={
"batch_size": batch_size,
"max_cache_len": 30,
},
),
)
prompts = ["Hello I am doing"]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = 30 - prompt_token_ids.shape[-1]
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
@parameterized.expand([("flash_attention_2",), ("sdpa",), ("flex_attention",), ("eager",)])
@require_read_token
def test_generation_beyond_sliding_window(self, attn_implementation: str):
"""Test that we can correctly generate beyond the sliding window. This is non trivial as
we need to correctly slice the attention mask in all cases (because we use a HybridCache).
Outputs for every attention functions should be coherent and identical.
"""
if torch_device == "xpu" and attn_implementation == "flash_attention_2":
self.skipTest(reason="Intel XPU doesn't support falsh_attention_2 as of now.")
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
EXPECTED_COMPLETIONS = [
" the mountains, the lakes, the rivers, the waterfalls, the waterfalls, the waterfalls, the waterfalls",
", green, yellow, orange, purple, pink, brown, black, white, grey, silver",
]
input_text = [
"This is a nice place. " * 800 + "I really enjoy the scenery,", # This is larger than 4096 tokens
"A list of colors: red, blue", # This will almost all be padding tokens
]
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
inputs = tokenizer(input_text, padding=True, return_tensors="pt").to(torch_device)
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation=attn_implementation, torch_dtype=torch.float16
).to(torch_device)
# Make sure prefill is larger than sliding window
input_size = inputs.input_ids.shape[-1]
self.assertTrue(input_size > model.config.sliding_window)
out = model.generate(**inputs, max_new_tokens=20)[:, input_size:]
output_text = tokenizer.batch_decode(out)
self.assertEqual(output_text, EXPECTED_COMPLETIONS)