transformers/tests/test_tokenization_cpm.py
Kevin Canwen Xu fb41f9f50c
Add a special tokenizer for CPM model (#11068)
* Add a special tokenizer for CPM model

* make style

* fix

* Add docs

* styles

* cpm doc

* fix ci

* fix the overview

* add test

* make style

* typo

* Custom tokenizer flag

* Add REAMDE.md

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-04-10 02:07:47 +08:00

40 lines
1.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2018 HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.models.cpm.tokenization_cpm import CpmTokenizer
from transformers.testing_utils import custom_tokenizers
from .test_modeling_xlnet import XLNetModelTest
@custom_tokenizers
class CpmTokenizationTest(XLNetModelTest):
def test_pre_tokenization(self):
tokenizer = CpmTokenizer.from_pretrained("TsinghuaAI/CPM-Generate")
text = "Hugging Face大法好谁用谁知道。"
normalized_text = "Hugging Face大法好,谁用谁知道。<unk>"
bpe_tokens = "▁Hu gg ing ▁ ▂ ▁F ace ▁大法 ▁好 ▁ , ▁谁 ▁用 ▁谁 ▁知 道 ▁ 。".split()
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [13789, 13283, 1421, 8, 10, 1164, 13608, 16528, 63, 8, 9, 440, 108, 440, 121, 90, 8, 12, 0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
reconstructed_text = tokenizer.decode(input_bpe_tokens)
self.assertEqual(reconstructed_text, normalized_text)