mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-23 22:38:58 +06:00

* add minimal working gpt2 tokenizer * graph mode and output equivalence tests working * not today tensorflow. serialization test passing! * fix style, documentation, docstrings and all that jazz * passing consistency checks * move keras nlp to tf dependencies * fix tf modeling utils and gpt2 attention to enable compiling * fix (I hope) keras nlp dependencies * rever changes on generation * remove debug prints * remove redundant tf dummy objects * add from config, get config and max length settings to address review * let flake ignore the error on distillation you are welcome * test from config * add padding test * address sgugger review
5924 lines
223 KiB
Python
5924 lines
223 KiB
Python
# flake8: noqa
|
|
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
|
# module, but to preserve other warnings. So, don't check this module at all.
|
|
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and
|
|
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are
|
|
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used
|
|
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
|
|
# in the namespace without actually importing anything (and especially none of the backends).
|
|
|
|
__version__ = "4.25.0.dev0"
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
# Check the dependencies satisfy the minimal versions required.
|
|
from . import dependency_versions_check
|
|
from .utils import (
|
|
OptionalDependencyNotAvailable,
|
|
_LazyModule,
|
|
is_flax_available,
|
|
is_keras_nlp_available,
|
|
is_sentencepiece_available,
|
|
is_speech_available,
|
|
is_tensorflow_text_available,
|
|
is_tf_available,
|
|
is_timm_available,
|
|
is_tokenizers_available,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
logging,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
# Base objects, independent of any specific backend
|
|
_import_structure = {
|
|
"benchmark": [],
|
|
"commands": [],
|
|
"configuration_utils": ["PretrainedConfig"],
|
|
"convert_graph_to_onnx": [],
|
|
"convert_slow_tokenizers_checkpoints_to_fast": [],
|
|
"convert_tf_hub_seq_to_seq_bert_to_pytorch": [],
|
|
"data": [
|
|
"DataProcessor",
|
|
"InputExample",
|
|
"InputFeatures",
|
|
"SingleSentenceClassificationProcessor",
|
|
"SquadExample",
|
|
"SquadFeatures",
|
|
"SquadV1Processor",
|
|
"SquadV2Processor",
|
|
"glue_compute_metrics",
|
|
"glue_convert_examples_to_features",
|
|
"glue_output_modes",
|
|
"glue_processors",
|
|
"glue_tasks_num_labels",
|
|
"squad_convert_examples_to_features",
|
|
"xnli_compute_metrics",
|
|
"xnli_output_modes",
|
|
"xnli_processors",
|
|
"xnli_tasks_num_labels",
|
|
],
|
|
"data.data_collator": [
|
|
"DataCollator",
|
|
"DataCollatorForLanguageModeling",
|
|
"DataCollatorForPermutationLanguageModeling",
|
|
"DataCollatorForSeq2Seq",
|
|
"DataCollatorForSOP",
|
|
"DataCollatorForTokenClassification",
|
|
"DataCollatorForWholeWordMask",
|
|
"DataCollatorWithPadding",
|
|
"DefaultDataCollator",
|
|
"default_data_collator",
|
|
],
|
|
"data.metrics": [],
|
|
"data.processors": [],
|
|
"debug_utils": [],
|
|
"dependency_versions_check": [],
|
|
"dependency_versions_table": [],
|
|
"dynamic_module_utils": [],
|
|
"feature_extraction_sequence_utils": ["SequenceFeatureExtractor"],
|
|
"feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"],
|
|
"file_utils": [],
|
|
"generation": ["GenerationConfig"],
|
|
"hf_argparser": ["HfArgumentParser"],
|
|
"integrations": [
|
|
"is_clearml_available",
|
|
"is_comet_available",
|
|
"is_neptune_available",
|
|
"is_optuna_available",
|
|
"is_ray_available",
|
|
"is_ray_tune_available",
|
|
"is_sigopt_available",
|
|
"is_tensorboard_available",
|
|
"is_wandb_available",
|
|
],
|
|
"modelcard": ["ModelCard"],
|
|
"modeling_tf_pytorch_utils": [
|
|
"convert_tf_weight_name_to_pt_weight_name",
|
|
"load_pytorch_checkpoint_in_tf2_model",
|
|
"load_pytorch_model_in_tf2_model",
|
|
"load_pytorch_weights_in_tf2_model",
|
|
"load_tf2_checkpoint_in_pytorch_model",
|
|
"load_tf2_model_in_pytorch_model",
|
|
"load_tf2_weights_in_pytorch_model",
|
|
],
|
|
"models": [],
|
|
# Models
|
|
"models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
|
|
"models.audio_spectrogram_transformer": [
|
|
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"ASTConfig",
|
|
],
|
|
"models.auto": [
|
|
"ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"CONFIG_MAPPING",
|
|
"FEATURE_EXTRACTOR_MAPPING",
|
|
"IMAGE_PROCESSOR_MAPPING",
|
|
"MODEL_NAMES_MAPPING",
|
|
"PROCESSOR_MAPPING",
|
|
"TOKENIZER_MAPPING",
|
|
"AutoConfig",
|
|
"AutoFeatureExtractor",
|
|
"AutoImageProcessor",
|
|
"AutoProcessor",
|
|
"AutoTokenizer",
|
|
],
|
|
"models.bart": ["BartConfig", "BartTokenizer"],
|
|
"models.barthez": [],
|
|
"models.bartpho": [],
|
|
"models.beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig"],
|
|
"models.bert": [
|
|
"BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"BasicTokenizer",
|
|
"BertConfig",
|
|
"BertTokenizer",
|
|
"WordpieceTokenizer",
|
|
],
|
|
"models.bert_generation": ["BertGenerationConfig"],
|
|
"models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"],
|
|
"models.bertweet": ["BertweetTokenizer"],
|
|
"models.big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig"],
|
|
"models.bigbird_pegasus": [
|
|
"BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"BigBirdPegasusConfig",
|
|
],
|
|
"models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"],
|
|
"models.blenderbot_small": [
|
|
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"BlenderbotSmallConfig",
|
|
"BlenderbotSmallTokenizer",
|
|
],
|
|
"models.bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig"],
|
|
"models.bort": [],
|
|
"models.byt5": ["ByT5Tokenizer"],
|
|
"models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],
|
|
"models.canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig", "CanineTokenizer"],
|
|
"models.clip": [
|
|
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"CLIPConfig",
|
|
"CLIPProcessor",
|
|
"CLIPTextConfig",
|
|
"CLIPTokenizer",
|
|
"CLIPVisionConfig",
|
|
],
|
|
"models.clipseg": [
|
|
"CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"CLIPSegConfig",
|
|
"CLIPSegProcessor",
|
|
"CLIPSegTextConfig",
|
|
"CLIPSegVisionConfig",
|
|
],
|
|
"models.codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenTokenizer"],
|
|
"models.conditional_detr": ["CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig"],
|
|
"models.convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertTokenizer"],
|
|
"models.convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig"],
|
|
"models.cpm": [],
|
|
"models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"],
|
|
"models.cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"],
|
|
"models.data2vec": [
|
|
"DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"Data2VecAudioConfig",
|
|
"Data2VecTextConfig",
|
|
"Data2VecVisionConfig",
|
|
],
|
|
"models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"],
|
|
"models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"],
|
|
"models.decision_transformer": ["DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "DecisionTransformerConfig"],
|
|
"models.deformable_detr": ["DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeformableDetrConfig"],
|
|
"models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"],
|
|
"models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
|
|
"models.dialogpt": [],
|
|
"models.dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"],
|
|
"models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"],
|
|
"models.dit": [],
|
|
"models.donut": ["DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "DonutProcessor", "DonutSwinConfig"],
|
|
"models.dpr": [
|
|
"DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"DPRConfig",
|
|
"DPRContextEncoderTokenizer",
|
|
"DPRQuestionEncoderTokenizer",
|
|
"DPRReaderOutput",
|
|
"DPRReaderTokenizer",
|
|
],
|
|
"models.dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"],
|
|
"models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"],
|
|
"models.encoder_decoder": ["EncoderDecoderConfig"],
|
|
"models.ernie": [
|
|
"ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"ErnieConfig",
|
|
],
|
|
"models.esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig", "EsmTokenizer"],
|
|
"models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
|
|
"models.flava": [
|
|
"FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"FlavaConfig",
|
|
"FlavaImageCodebookConfig",
|
|
"FlavaImageConfig",
|
|
"FlavaMultimodalConfig",
|
|
"FlavaTextConfig",
|
|
],
|
|
"models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
|
|
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
|
|
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
|
|
"models.glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"],
|
|
"models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"],
|
|
"models.gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig"],
|
|
"models.gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"],
|
|
"models.gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"],
|
|
"models.gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig"],
|
|
"models.groupvit": [
|
|
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"GroupViTConfig",
|
|
"GroupViTTextConfig",
|
|
"GroupViTVisionConfig",
|
|
],
|
|
"models.herbert": ["HerbertTokenizer"],
|
|
"models.hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"],
|
|
"models.ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig"],
|
|
"models.imagegpt": ["IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ImageGPTConfig"],
|
|
"models.jukebox": [
|
|
"JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"JukeboxConfig",
|
|
"JukeboxPriorConfig",
|
|
"JukeboxTokenizer",
|
|
"JukeboxVQVAEConfig",
|
|
],
|
|
"models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"],
|
|
"models.layoutlmv2": [
|
|
"LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"LayoutLMv2Config",
|
|
"LayoutLMv2FeatureExtractor",
|
|
"LayoutLMv2ImageProcessor",
|
|
"LayoutLMv2Processor",
|
|
"LayoutLMv2Tokenizer",
|
|
],
|
|
"models.layoutlmv3": [
|
|
"LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"LayoutLMv3Config",
|
|
"LayoutLMv3FeatureExtractor",
|
|
"LayoutLMv3ImageProcessor",
|
|
"LayoutLMv3Processor",
|
|
"LayoutLMv3Tokenizer",
|
|
],
|
|
"models.layoutxlm": ["LayoutXLMProcessor"],
|
|
"models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
|
|
"models.levit": ["LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LevitConfig"],
|
|
"models.lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"],
|
|
"models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"],
|
|
"models.longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config"],
|
|
"models.luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig", "LukeTokenizer"],
|
|
"models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"],
|
|
"models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
|
|
"models.marian": ["MarianConfig"],
|
|
"models.markuplm": [
|
|
"MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"MarkupLMConfig",
|
|
"MarkupLMFeatureExtractor",
|
|
"MarkupLMProcessor",
|
|
"MarkupLMTokenizer",
|
|
],
|
|
"models.maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig", "MaskFormerSwinConfig"],
|
|
"models.mbart": ["MBartConfig"],
|
|
"models.mbart50": [],
|
|
"models.mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig", "MCTCTProcessor"],
|
|
"models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
|
|
"models.megatron_gpt2": [],
|
|
"models.mluke": [],
|
|
"models.mmbt": ["MMBTConfig"],
|
|
"models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"],
|
|
"models.mobilenet_v1": ["MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV1Config"],
|
|
"models.mobilenet_v2": ["MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config"],
|
|
"models.mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig"],
|
|
"models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"],
|
|
"models.mt5": ["MT5Config"],
|
|
"models.mvp": ["MvpConfig", "MvpTokenizer"],
|
|
"models.nat": ["NAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "NatConfig"],
|
|
"models.nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
|
|
"models.nllb": [],
|
|
"models.nystromformer": [
|
|
"NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"NystromformerConfig",
|
|
],
|
|
"models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"],
|
|
"models.opt": ["OPTConfig"],
|
|
"models.owlvit": [
|
|
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"OwlViTConfig",
|
|
"OwlViTProcessor",
|
|
"OwlViTTextConfig",
|
|
"OwlViTVisionConfig",
|
|
],
|
|
"models.pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig", "PegasusTokenizer"],
|
|
"models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
|
|
"models.perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverTokenizer"],
|
|
"models.phobert": ["PhobertTokenizer"],
|
|
"models.plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"],
|
|
"models.poolformer": ["POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig"],
|
|
"models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"],
|
|
"models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
|
|
"models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
|
|
"models.realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig", "RealmTokenizer"],
|
|
"models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
|
|
"models.regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"],
|
|
"models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"],
|
|
"models.resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig"],
|
|
"models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"],
|
|
"models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"],
|
|
"models.roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig", "RoCBertTokenizer"],
|
|
"models.roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerTokenizer"],
|
|
"models.segformer": ["SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SegformerConfig"],
|
|
"models.sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"],
|
|
"models.sew_d": ["SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWDConfig"],
|
|
"models.speech_encoder_decoder": ["SpeechEncoderDecoderConfig"],
|
|
"models.speech_to_text": [
|
|
"SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"Speech2TextConfig",
|
|
],
|
|
"models.speech_to_text_2": [
|
|
"SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"Speech2Text2Config",
|
|
"Speech2Text2Processor",
|
|
"Speech2Text2Tokenizer",
|
|
],
|
|
"models.splinter": ["SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SplinterConfig", "SplinterTokenizer"],
|
|
"models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"],
|
|
"models.swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig"],
|
|
"models.swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
|
|
"models.switch_transformers": ["SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwitchTransformersConfig"],
|
|
"models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
|
|
"models.table_transformer": ["TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig"],
|
|
"models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"],
|
|
"models.tapex": ["TapexTokenizer"],
|
|
"models.time_series_transformer": [
|
|
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"TimeSeriesTransformerConfig",
|
|
],
|
|
"models.trajectory_transformer": [
|
|
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"TrajectoryTransformerConfig",
|
|
],
|
|
"models.transfo_xl": [
|
|
"TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"TransfoXLConfig",
|
|
"TransfoXLCorpus",
|
|
"TransfoXLTokenizer",
|
|
],
|
|
"models.trocr": [
|
|
"TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"TrOCRConfig",
|
|
"TrOCRProcessor",
|
|
],
|
|
"models.unispeech": [
|
|
"UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"UniSpeechConfig",
|
|
],
|
|
"models.unispeech_sat": [
|
|
"UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"UniSpeechSatConfig",
|
|
],
|
|
"models.van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"],
|
|
"models.videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"],
|
|
"models.vilt": [
|
|
"VILT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"ViltConfig",
|
|
"ViltFeatureExtractor",
|
|
"ViltImageProcessor",
|
|
"ViltProcessor",
|
|
],
|
|
"models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"],
|
|
"models.vision_text_dual_encoder": ["VisionTextDualEncoderConfig", "VisionTextDualEncoderProcessor"],
|
|
"models.visual_bert": ["VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VisualBertConfig"],
|
|
"models.vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig"],
|
|
"models.vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"],
|
|
"models.vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"],
|
|
"models.wav2vec2": [
|
|
"WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"Wav2Vec2Config",
|
|
"Wav2Vec2CTCTokenizer",
|
|
"Wav2Vec2FeatureExtractor",
|
|
"Wav2Vec2Processor",
|
|
"Wav2Vec2Tokenizer",
|
|
],
|
|
"models.wav2vec2_conformer": [
|
|
"WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"Wav2Vec2ConformerConfig",
|
|
],
|
|
"models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"],
|
|
"models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"],
|
|
"models.wavlm": [
|
|
"WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"WavLMConfig",
|
|
],
|
|
"models.whisper": [
|
|
"WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"WhisperConfig",
|
|
"WhisperFeatureExtractor",
|
|
"WhisperProcessor",
|
|
"WhisperTokenizer",
|
|
],
|
|
"models.x_clip": [
|
|
"XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
|
"XCLIPConfig",
|
|
"XCLIPProcessor",
|
|
"XCLIPTextConfig",
|
|
"XCLIPVisionConfig",
|
|
],
|
|
"models.xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"],
|
|
"models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],
|
|
"models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"],
|
|
"models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"],
|
|
"models.xlm_roberta_xl": ["XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig"],
|
|
"models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"],
|
|
"models.yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig"],
|
|
"models.yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"],
|
|
"onnx": [],
|
|
"pipelines": [
|
|
"AudioClassificationPipeline",
|
|
"AutomaticSpeechRecognitionPipeline",
|
|
"Conversation",
|
|
"ConversationalPipeline",
|
|
"CsvPipelineDataFormat",
|
|
"DepthEstimationPipeline",
|
|
"DocumentQuestionAnsweringPipeline",
|
|
"FeatureExtractionPipeline",
|
|
"FillMaskPipeline",
|
|
"ImageClassificationPipeline",
|
|
"ImageSegmentationPipeline",
|
|
"ImageToTextPipeline",
|
|
"JsonPipelineDataFormat",
|
|
"NerPipeline",
|
|
"ObjectDetectionPipeline",
|
|
"PipedPipelineDataFormat",
|
|
"Pipeline",
|
|
"PipelineDataFormat",
|
|
"QuestionAnsweringPipeline",
|
|
"SummarizationPipeline",
|
|
"TableQuestionAnsweringPipeline",
|
|
"Text2TextGenerationPipeline",
|
|
"TextClassificationPipeline",
|
|
"TextGenerationPipeline",
|
|
"TokenClassificationPipeline",
|
|
"TranslationPipeline",
|
|
"VisualQuestionAnsweringPipeline",
|
|
"ZeroShotClassificationPipeline",
|
|
"ZeroShotImageClassificationPipeline",
|
|
"ZeroShotObjectDetectionPipeline",
|
|
"pipeline",
|
|
],
|
|
"processing_utils": ["ProcessorMixin"],
|
|
"testing_utils": [],
|
|
"tokenization_utils": ["PreTrainedTokenizer"],
|
|
"tokenization_utils_base": [
|
|
"AddedToken",
|
|
"BatchEncoding",
|
|
"CharSpan",
|
|
"PreTrainedTokenizerBase",
|
|
"SpecialTokensMixin",
|
|
"TokenSpan",
|
|
],
|
|
"trainer_callback": [
|
|
"DefaultFlowCallback",
|
|
"EarlyStoppingCallback",
|
|
"PrinterCallback",
|
|
"ProgressCallback",
|
|
"TrainerCallback",
|
|
"TrainerControl",
|
|
"TrainerState",
|
|
],
|
|
"trainer_utils": ["EvalPrediction", "IntervalStrategy", "SchedulerType", "enable_full_determinism", "set_seed"],
|
|
"training_args": ["TrainingArguments"],
|
|
"training_args_seq2seq": ["Seq2SeqTrainingArguments"],
|
|
"training_args_tf": ["TFTrainingArguments"],
|
|
"utils": [
|
|
"CONFIG_NAME",
|
|
"MODEL_CARD_NAME",
|
|
"PYTORCH_PRETRAINED_BERT_CACHE",
|
|
"PYTORCH_TRANSFORMERS_CACHE",
|
|
"SPIECE_UNDERLINE",
|
|
"TF2_WEIGHTS_NAME",
|
|
"TF_WEIGHTS_NAME",
|
|
"TRANSFORMERS_CACHE",
|
|
"WEIGHTS_NAME",
|
|
"TensorType",
|
|
"add_end_docstrings",
|
|
"add_start_docstrings",
|
|
"is_apex_available",
|
|
"is_datasets_available",
|
|
"is_faiss_available",
|
|
"is_flax_available",
|
|
"is_phonemizer_available",
|
|
"is_psutil_available",
|
|
"is_py3nvml_available",
|
|
"is_pyctcdecode_available",
|
|
"is_safetensors_available",
|
|
"is_scipy_available",
|
|
"is_sentencepiece_available",
|
|
"is_sklearn_available",
|
|
"is_speech_available",
|
|
"is_tensorflow_text_available",
|
|
"is_tf_available",
|
|
"is_timm_available",
|
|
"is_tokenizers_available",
|
|
"is_torch_available",
|
|
"is_torch_tpu_available",
|
|
"is_vision_available",
|
|
"logging",
|
|
],
|
|
"utils.bitsandbytes": [],
|
|
}
|
|
|
|
# sentencepiece-backed objects
|
|
try:
|
|
if not is_sentencepiece_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_sentencepiece_objects
|
|
|
|
_import_structure["utils.dummy_sentencepiece_objects"] = [
|
|
name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.albert"].append("AlbertTokenizer")
|
|
_import_structure["models.barthez"].append("BarthezTokenizer")
|
|
_import_structure["models.bartpho"].append("BartphoTokenizer")
|
|
_import_structure["models.bert_generation"].append("BertGenerationTokenizer")
|
|
_import_structure["models.big_bird"].append("BigBirdTokenizer")
|
|
_import_structure["models.camembert"].append("CamembertTokenizer")
|
|
_import_structure["models.cpm"].append("CpmTokenizer")
|
|
_import_structure["models.deberta_v2"].append("DebertaV2Tokenizer")
|
|
_import_structure["models.fnet"].append("FNetTokenizer")
|
|
_import_structure["models.layoutxlm"].append("LayoutXLMTokenizer")
|
|
_import_structure["models.m2m_100"].append("M2M100Tokenizer")
|
|
_import_structure["models.marian"].append("MarianTokenizer")
|
|
_import_structure["models.mbart"].append("MBartTokenizer")
|
|
_import_structure["models.mbart50"].append("MBart50Tokenizer")
|
|
_import_structure["models.mluke"].append("MLukeTokenizer")
|
|
_import_structure["models.mt5"].append("MT5Tokenizer")
|
|
_import_structure["models.nllb"].append("NllbTokenizer")
|
|
_import_structure["models.pegasus"].append("PegasusTokenizer")
|
|
_import_structure["models.plbart"].append("PLBartTokenizer")
|
|
_import_structure["models.reformer"].append("ReformerTokenizer")
|
|
_import_structure["models.rembert"].append("RemBertTokenizer")
|
|
_import_structure["models.speech_to_text"].append("Speech2TextTokenizer")
|
|
_import_structure["models.t5"].append("T5Tokenizer")
|
|
_import_structure["models.xglm"].append("XGLMTokenizer")
|
|
_import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer")
|
|
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer")
|
|
_import_structure["models.xlnet"].append("XLNetTokenizer")
|
|
|
|
# tokenizers-backed objects
|
|
try:
|
|
if not is_tokenizers_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_tokenizers_objects
|
|
|
|
_import_structure["utils.dummy_tokenizers_objects"] = [
|
|
name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
# Fast tokenizers structure
|
|
_import_structure["models.albert"].append("AlbertTokenizerFast")
|
|
_import_structure["models.bart"].append("BartTokenizerFast")
|
|
_import_structure["models.barthez"].append("BarthezTokenizerFast")
|
|
_import_structure["models.bert"].append("BertTokenizerFast")
|
|
_import_structure["models.big_bird"].append("BigBirdTokenizerFast")
|
|
_import_structure["models.blenderbot"].append("BlenderbotTokenizerFast")
|
|
_import_structure["models.blenderbot_small"].append("BlenderbotSmallTokenizerFast")
|
|
_import_structure["models.bloom"].append("BloomTokenizerFast")
|
|
_import_structure["models.camembert"].append("CamembertTokenizerFast")
|
|
_import_structure["models.clip"].append("CLIPTokenizerFast")
|
|
_import_structure["models.codegen"].append("CodeGenTokenizerFast")
|
|
_import_structure["models.convbert"].append("ConvBertTokenizerFast")
|
|
_import_structure["models.cpm"].append("CpmTokenizerFast")
|
|
_import_structure["models.deberta"].append("DebertaTokenizerFast")
|
|
_import_structure["models.deberta_v2"].append("DebertaV2TokenizerFast")
|
|
_import_structure["models.distilbert"].append("DistilBertTokenizerFast")
|
|
_import_structure["models.dpr"].extend(
|
|
["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"]
|
|
)
|
|
_import_structure["models.electra"].append("ElectraTokenizerFast")
|
|
_import_structure["models.fnet"].append("FNetTokenizerFast")
|
|
_import_structure["models.funnel"].append("FunnelTokenizerFast")
|
|
_import_structure["models.gpt2"].append("GPT2TokenizerFast")
|
|
_import_structure["models.gpt_neox"].append("GPTNeoXTokenizerFast")
|
|
_import_structure["models.gpt_neox_japanese"].append("GPTNeoXJapaneseTokenizer")
|
|
_import_structure["models.herbert"].append("HerbertTokenizerFast")
|
|
_import_structure["models.layoutlm"].append("LayoutLMTokenizerFast")
|
|
_import_structure["models.layoutlmv2"].append("LayoutLMv2TokenizerFast")
|
|
_import_structure["models.layoutlmv3"].append("LayoutLMv3TokenizerFast")
|
|
_import_structure["models.layoutxlm"].append("LayoutXLMTokenizerFast")
|
|
_import_structure["models.led"].append("LEDTokenizerFast")
|
|
_import_structure["models.longformer"].append("LongformerTokenizerFast")
|
|
_import_structure["models.lxmert"].append("LxmertTokenizerFast")
|
|
_import_structure["models.markuplm"].append("MarkupLMTokenizerFast")
|
|
_import_structure["models.mbart"].append("MBartTokenizerFast")
|
|
_import_structure["models.mbart50"].append("MBart50TokenizerFast")
|
|
_import_structure["models.mobilebert"].append("MobileBertTokenizerFast")
|
|
_import_structure["models.mpnet"].append("MPNetTokenizerFast")
|
|
_import_structure["models.mt5"].append("MT5TokenizerFast")
|
|
_import_structure["models.mvp"].append("MvpTokenizerFast")
|
|
_import_structure["models.nllb"].append("NllbTokenizerFast")
|
|
_import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
|
|
_import_structure["models.pegasus"].append("PegasusTokenizerFast")
|
|
_import_structure["models.realm"].append("RealmTokenizerFast")
|
|
_import_structure["models.reformer"].append("ReformerTokenizerFast")
|
|
_import_structure["models.rembert"].append("RemBertTokenizerFast")
|
|
_import_structure["models.retribert"].append("RetriBertTokenizerFast")
|
|
_import_structure["models.roberta"].append("RobertaTokenizerFast")
|
|
_import_structure["models.roformer"].append("RoFormerTokenizerFast")
|
|
_import_structure["models.splinter"].append("SplinterTokenizerFast")
|
|
_import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast")
|
|
_import_structure["models.t5"].append("T5TokenizerFast")
|
|
_import_structure["models.xglm"].append("XGLMTokenizerFast")
|
|
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast")
|
|
_import_structure["models.xlnet"].append("XLNetTokenizerFast")
|
|
_import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]
|
|
|
|
|
|
try:
|
|
if not (is_sentencepiece_available() and is_tokenizers_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_sentencepiece_and_tokenizers_objects
|
|
|
|
_import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [
|
|
name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"]
|
|
|
|
# Speech-specific objects
|
|
try:
|
|
if not is_speech_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_speech_objects
|
|
|
|
_import_structure["utils.dummy_speech_objects"] = [
|
|
name for name in dir(dummy_speech_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.audio_spectrogram_transformer"].append("ASTFeatureExtractor")
|
|
_import_structure["models.mctct"].append("MCTCTFeatureExtractor")
|
|
_import_structure["models.speech_to_text"].append("Speech2TextFeatureExtractor")
|
|
|
|
# Tensorflow-text-specific objects
|
|
try:
|
|
if not is_tensorflow_text_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_tensorflow_text_objects
|
|
|
|
_import_structure["utils.dummy_tensorflow_text_objects"] = [
|
|
name for name in dir(dummy_tensorflow_text_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.bert"].append("TFBertTokenizer")
|
|
|
|
# keras-nlp-specific objects
|
|
try:
|
|
if not is_keras_nlp_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_keras_nlp_objects
|
|
|
|
_import_structure["utils.dummy_keras_nlp_objects"] = [
|
|
name for name in dir(dummy_keras_nlp_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.gpt2"].append("TFGPT2Tokenizer")
|
|
|
|
try:
|
|
if not (is_sentencepiece_available() and is_speech_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_sentencepiece_and_speech_objects
|
|
|
|
_import_structure["utils.dummy_sentencepiece_and_speech_objects"] = [
|
|
name for name in dir(dummy_sentencepiece_and_speech_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.speech_to_text"].append("Speech2TextProcessor")
|
|
|
|
# Vision-specific objects
|
|
try:
|
|
if not is_vision_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_vision_objects
|
|
|
|
_import_structure["utils.dummy_vision_objects"] = [
|
|
name for name in dir(dummy_vision_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["image_processing_utils"] = ["ImageProcessingMixin"]
|
|
_import_structure["image_transforms"] = ["rescale", "resize", "to_pil_image"]
|
|
_import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
|
|
_import_structure["models.beit"].extend(["BeitFeatureExtractor", "BeitImageProcessor"])
|
|
_import_structure["models.clip"].extend(["CLIPFeatureExtractor", "CLIPImageProcessor"])
|
|
_import_structure["models.conditional_detr"].append("ConditionalDetrFeatureExtractor")
|
|
_import_structure["models.convnext"].extend(["ConvNextFeatureExtractor", "ConvNextImageProcessor"])
|
|
_import_structure["models.deformable_detr"].append("DeformableDetrFeatureExtractor")
|
|
_import_structure["models.deit"].extend(["DeiTFeatureExtractor", "DeiTImageProcessor"])
|
|
_import_structure["models.detr"].append("DetrFeatureExtractor")
|
|
_import_structure["models.donut"].extend(["DonutFeatureExtractor", "DonutImageProcessor"])
|
|
_import_structure["models.dpt"].extend(["DPTFeatureExtractor", "DPTImageProcessor"])
|
|
_import_structure["models.flava"].extend(["FlavaFeatureExtractor", "FlavaImageProcessor", "FlavaProcessor"])
|
|
_import_structure["models.glpn"].extend(["GLPNFeatureExtractor", "GLPNImageProcessor"])
|
|
_import_structure["models.imagegpt"].extend(["ImageGPTFeatureExtractor", "ImageGPTImageProcessor"])
|
|
_import_structure["models.layoutlmv2"].extend(["LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor"])
|
|
_import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"])
|
|
_import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"])
|
|
_import_structure["models.maskformer"].append("MaskFormerFeatureExtractor")
|
|
_import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
|
|
_import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"])
|
|
_import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"])
|
|
_import_structure["models.owlvit"].append("OwlViTFeatureExtractor")
|
|
_import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"])
|
|
_import_structure["models.poolformer"].extend(["PoolFormerFeatureExtractor", "PoolFormerImageProcessor"])
|
|
_import_structure["models.segformer"].extend(["SegformerFeatureExtractor", "SegformerImageProcessor"])
|
|
_import_structure["models.videomae"].extend(["VideoMAEFeatureExtractor", "VideoMAEImageProcessor"])
|
|
_import_structure["models.vilt"].extend(["ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor"])
|
|
_import_structure["models.vit"].extend(["ViTFeatureExtractor", "ViTImageProcessor"])
|
|
_import_structure["models.yolos"].extend(["YolosFeatureExtractor"])
|
|
|
|
# Timm-backed objects
|
|
try:
|
|
if not (is_timm_available() and is_vision_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_timm_and_vision_objects
|
|
|
|
_import_structure["utils.dummy_timm_and_vision_objects"] = [
|
|
name for name in dir(dummy_timm_and_vision_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["models.deformable_detr"].extend(
|
|
[
|
|
"DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DeformableDetrForObjectDetection",
|
|
"DeformableDetrModel",
|
|
"DeformableDetrPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.detr"].extend(
|
|
[
|
|
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DetrForObjectDetection",
|
|
"DetrForSegmentation",
|
|
"DetrModel",
|
|
"DetrPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.table_transformer"].extend(
|
|
[
|
|
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TableTransformerForObjectDetection",
|
|
"TableTransformerModel",
|
|
"TableTransformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.conditional_detr"].extend(
|
|
[
|
|
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ConditionalDetrForObjectDetection",
|
|
"ConditionalDetrForSegmentation",
|
|
"ConditionalDetrModel",
|
|
"ConditionalDetrPreTrainedModel",
|
|
]
|
|
)
|
|
|
|
|
|
# PyTorch-backed objects
|
|
try:
|
|
if not is_torch_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_pt_objects
|
|
|
|
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
|
|
else:
|
|
_import_structure["activations"] = []
|
|
_import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
|
|
_import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"]
|
|
_import_structure["data.datasets"] = [
|
|
"GlueDataset",
|
|
"GlueDataTrainingArguments",
|
|
"LineByLineTextDataset",
|
|
"LineByLineWithRefDataset",
|
|
"LineByLineWithSOPTextDataset",
|
|
"SquadDataset",
|
|
"SquadDataTrainingArguments",
|
|
"TextDataset",
|
|
"TextDatasetForNextSentencePrediction",
|
|
]
|
|
_import_structure["deepspeed"] = []
|
|
_import_structure["generation"].extend(
|
|
[
|
|
"BeamScorer",
|
|
"BeamSearchScorer",
|
|
"ConstrainedBeamSearchScorer",
|
|
"Constraint",
|
|
"ConstraintListState",
|
|
"DisjunctiveConstraint",
|
|
"ForcedBOSTokenLogitsProcessor",
|
|
"ForcedEOSTokenLogitsProcessor",
|
|
"GenerationMixin",
|
|
"HammingDiversityLogitsProcessor",
|
|
"InfNanRemoveLogitsProcessor",
|
|
"LogitsProcessor",
|
|
"LogitsProcessorList",
|
|
"LogitsWarper",
|
|
"MaxLengthCriteria",
|
|
"MaxTimeCriteria",
|
|
"MinLengthLogitsProcessor",
|
|
"NoBadWordsLogitsProcessor",
|
|
"NoRepeatNGramLogitsProcessor",
|
|
"PhrasalConstraint",
|
|
"PrefixConstrainedLogitsProcessor",
|
|
"RepetitionPenaltyLogitsProcessor",
|
|
"StoppingCriteria",
|
|
"StoppingCriteriaList",
|
|
"TemperatureLogitsWarper",
|
|
"TopKLogitsWarper",
|
|
"TopPLogitsWarper",
|
|
"TypicalLogitsWarper",
|
|
"top_k_top_p_filtering",
|
|
]
|
|
)
|
|
_import_structure["generation_utils"] = []
|
|
_import_structure["modeling_outputs"] = []
|
|
_import_structure["modeling_utils"] = ["PreTrainedModel"]
|
|
|
|
# PyTorch models structure
|
|
_import_structure["models.albert"].extend(
|
|
[
|
|
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"AlbertForMaskedLM",
|
|
"AlbertForMultipleChoice",
|
|
"AlbertForPreTraining",
|
|
"AlbertForQuestionAnswering",
|
|
"AlbertForSequenceClassification",
|
|
"AlbertForTokenClassification",
|
|
"AlbertModel",
|
|
"AlbertPreTrainedModel",
|
|
"load_tf_weights_in_albert",
|
|
]
|
|
)
|
|
|
|
_import_structure["models.audio_spectrogram_transformer"].extend(
|
|
[
|
|
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ASTForAudioClassification",
|
|
"ASTModel",
|
|
"ASTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.auto"].extend(
|
|
[
|
|
"MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
|
|
"MODEL_FOR_AUDIO_XVECTOR_MAPPING",
|
|
"MODEL_FOR_BACKBONE_MAPPING",
|
|
"MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING",
|
|
"MODEL_FOR_CAUSAL_LM_MAPPING",
|
|
"MODEL_FOR_CTC_MAPPING",
|
|
"MODEL_FOR_DEPTH_ESTIMATION_MAPPING",
|
|
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
|
|
"MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
|
"MODEL_FOR_IMAGE_SEGMENTATION_MAPPING",
|
|
"MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING",
|
|
"MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
|
"MODEL_FOR_MASKED_LM_MAPPING",
|
|
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
|
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
|
|
"MODEL_FOR_OBJECT_DETECTION_MAPPING",
|
|
"MODEL_FOR_PRETRAINING_MAPPING",
|
|
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
|
|
"MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
|
|
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
|
|
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
|
|
"MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
|
|
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
|
|
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
|
|
"MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING",
|
|
"MODEL_FOR_VISION_2_SEQ_MAPPING",
|
|
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING",
|
|
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING",
|
|
"MODEL_MAPPING",
|
|
"MODEL_WITH_LM_HEAD_MAPPING",
|
|
"AutoBackbone",
|
|
"AutoModel",
|
|
"AutoModelForAudioClassification",
|
|
"AutoModelForAudioFrameClassification",
|
|
"AutoModelForAudioXVector",
|
|
"AutoModelForCausalLM",
|
|
"AutoModelForCTC",
|
|
"AutoModelForDepthEstimation",
|
|
"AutoModelForDocumentQuestionAnswering",
|
|
"AutoModelForImageClassification",
|
|
"AutoModelForImageSegmentation",
|
|
"AutoModelForInstanceSegmentation",
|
|
"AutoModelForMaskedImageModeling",
|
|
"AutoModelForMaskedLM",
|
|
"AutoModelForMultipleChoice",
|
|
"AutoModelForNextSentencePrediction",
|
|
"AutoModelForObjectDetection",
|
|
"AutoModelForPreTraining",
|
|
"AutoModelForQuestionAnswering",
|
|
"AutoModelForSemanticSegmentation",
|
|
"AutoModelForSeq2SeqLM",
|
|
"AutoModelForSequenceClassification",
|
|
"AutoModelForSpeechSeq2Seq",
|
|
"AutoModelForTableQuestionAnswering",
|
|
"AutoModelForTokenClassification",
|
|
"AutoModelForVideoClassification",
|
|
"AutoModelForVision2Seq",
|
|
"AutoModelForVisualQuestionAnswering",
|
|
"AutoModelForZeroShotObjectDetection",
|
|
"AutoModelWithLMHead",
|
|
]
|
|
)
|
|
_import_structure["models.bart"].extend(
|
|
[
|
|
"BART_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BartForCausalLM",
|
|
"BartForConditionalGeneration",
|
|
"BartForQuestionAnswering",
|
|
"BartForSequenceClassification",
|
|
"BartModel",
|
|
"BartPretrainedModel",
|
|
"PretrainedBartModel",
|
|
]
|
|
)
|
|
_import_structure["models.beit"].extend(
|
|
[
|
|
"BEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BeitForImageClassification",
|
|
"BeitForMaskedImageModeling",
|
|
"BeitForSemanticSegmentation",
|
|
"BeitModel",
|
|
"BeitPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.bert"].extend(
|
|
[
|
|
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BertForMaskedLM",
|
|
"BertForMultipleChoice",
|
|
"BertForNextSentencePrediction",
|
|
"BertForPreTraining",
|
|
"BertForQuestionAnswering",
|
|
"BertForSequenceClassification",
|
|
"BertForTokenClassification",
|
|
"BertLayer",
|
|
"BertLMHeadModel",
|
|
"BertModel",
|
|
"BertPreTrainedModel",
|
|
"load_tf_weights_in_bert",
|
|
]
|
|
)
|
|
_import_structure["models.bert_generation"].extend(
|
|
[
|
|
"BertGenerationDecoder",
|
|
"BertGenerationEncoder",
|
|
"BertGenerationPreTrainedModel",
|
|
"load_tf_weights_in_bert_generation",
|
|
]
|
|
)
|
|
_import_structure["models.big_bird"].extend(
|
|
[
|
|
"BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BigBirdForCausalLM",
|
|
"BigBirdForMaskedLM",
|
|
"BigBirdForMultipleChoice",
|
|
"BigBirdForPreTraining",
|
|
"BigBirdForQuestionAnswering",
|
|
"BigBirdForSequenceClassification",
|
|
"BigBirdForTokenClassification",
|
|
"BigBirdLayer",
|
|
"BigBirdModel",
|
|
"BigBirdPreTrainedModel",
|
|
"load_tf_weights_in_big_bird",
|
|
]
|
|
)
|
|
_import_structure["models.bigbird_pegasus"].extend(
|
|
[
|
|
"BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BigBirdPegasusForCausalLM",
|
|
"BigBirdPegasusForConditionalGeneration",
|
|
"BigBirdPegasusForQuestionAnswering",
|
|
"BigBirdPegasusForSequenceClassification",
|
|
"BigBirdPegasusModel",
|
|
"BigBirdPegasusPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.blenderbot"].extend(
|
|
[
|
|
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BlenderbotForCausalLM",
|
|
"BlenderbotForConditionalGeneration",
|
|
"BlenderbotModel",
|
|
"BlenderbotPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.blenderbot_small"].extend(
|
|
[
|
|
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BlenderbotSmallForCausalLM",
|
|
"BlenderbotSmallForConditionalGeneration",
|
|
"BlenderbotSmallModel",
|
|
"BlenderbotSmallPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.bloom"].extend(
|
|
[
|
|
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"BloomForCausalLM",
|
|
"BloomForQuestionAnswering",
|
|
"BloomForSequenceClassification",
|
|
"BloomForTokenClassification",
|
|
"BloomModel",
|
|
"BloomPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.camembert"].extend(
|
|
[
|
|
"CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CamembertForCausalLM",
|
|
"CamembertForMaskedLM",
|
|
"CamembertForMultipleChoice",
|
|
"CamembertForQuestionAnswering",
|
|
"CamembertForSequenceClassification",
|
|
"CamembertForTokenClassification",
|
|
"CamembertModel",
|
|
"CamembertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.canine"].extend(
|
|
[
|
|
"CANINE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CanineForMultipleChoice",
|
|
"CanineForQuestionAnswering",
|
|
"CanineForSequenceClassification",
|
|
"CanineForTokenClassification",
|
|
"CanineLayer",
|
|
"CanineModel",
|
|
"CaninePreTrainedModel",
|
|
"load_tf_weights_in_canine",
|
|
]
|
|
)
|
|
_import_structure["models.clip"].extend(
|
|
[
|
|
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CLIPModel",
|
|
"CLIPPreTrainedModel",
|
|
"CLIPTextModel",
|
|
"CLIPTextModelWithProjection",
|
|
"CLIPVisionModel",
|
|
"CLIPVisionModelWithProjection",
|
|
]
|
|
)
|
|
_import_structure["models.clipseg"].extend(
|
|
[
|
|
"CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CLIPSegForImageSegmentation",
|
|
"CLIPSegModel",
|
|
"CLIPSegPreTrainedModel",
|
|
"CLIPSegTextModel",
|
|
"CLIPSegVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.codegen"].extend(
|
|
[
|
|
"CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CodeGenForCausalLM",
|
|
"CodeGenModel",
|
|
"CodeGenPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.convbert"].extend(
|
|
[
|
|
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ConvBertForMaskedLM",
|
|
"ConvBertForMultipleChoice",
|
|
"ConvBertForQuestionAnswering",
|
|
"ConvBertForSequenceClassification",
|
|
"ConvBertForTokenClassification",
|
|
"ConvBertLayer",
|
|
"ConvBertModel",
|
|
"ConvBertPreTrainedModel",
|
|
"load_tf_weights_in_convbert",
|
|
]
|
|
)
|
|
_import_structure["models.convnext"].extend(
|
|
[
|
|
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ConvNextForImageClassification",
|
|
"ConvNextModel",
|
|
"ConvNextPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.ctrl"].extend(
|
|
[
|
|
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CTRLForSequenceClassification",
|
|
"CTRLLMHeadModel",
|
|
"CTRLModel",
|
|
"CTRLPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.cvt"].extend(
|
|
[
|
|
"CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"CvtForImageClassification",
|
|
"CvtModel",
|
|
"CvtPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.data2vec"].extend(
|
|
[
|
|
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"Data2VecAudioForAudioFrameClassification",
|
|
"Data2VecAudioForCTC",
|
|
"Data2VecAudioForSequenceClassification",
|
|
"Data2VecAudioForXVector",
|
|
"Data2VecAudioModel",
|
|
"Data2VecAudioPreTrainedModel",
|
|
"Data2VecTextForCausalLM",
|
|
"Data2VecTextForMaskedLM",
|
|
"Data2VecTextForMultipleChoice",
|
|
"Data2VecTextForQuestionAnswering",
|
|
"Data2VecTextForSequenceClassification",
|
|
"Data2VecTextForTokenClassification",
|
|
"Data2VecTextModel",
|
|
"Data2VecTextPreTrainedModel",
|
|
"Data2VecVisionForImageClassification",
|
|
"Data2VecVisionForSemanticSegmentation",
|
|
"Data2VecVisionModel",
|
|
"Data2VecVisionPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deberta"].extend(
|
|
[
|
|
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DebertaForMaskedLM",
|
|
"DebertaForQuestionAnswering",
|
|
"DebertaForSequenceClassification",
|
|
"DebertaForTokenClassification",
|
|
"DebertaModel",
|
|
"DebertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deberta_v2"].extend(
|
|
[
|
|
"DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DebertaV2ForMaskedLM",
|
|
"DebertaV2ForMultipleChoice",
|
|
"DebertaV2ForQuestionAnswering",
|
|
"DebertaV2ForSequenceClassification",
|
|
"DebertaV2ForTokenClassification",
|
|
"DebertaV2Model",
|
|
"DebertaV2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.decision_transformer"].extend(
|
|
[
|
|
"DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DecisionTransformerGPT2Model",
|
|
"DecisionTransformerGPT2PreTrainedModel",
|
|
"DecisionTransformerModel",
|
|
"DecisionTransformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deit"].extend(
|
|
[
|
|
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DeiTForImageClassification",
|
|
"DeiTForImageClassificationWithTeacher",
|
|
"DeiTForMaskedImageModeling",
|
|
"DeiTModel",
|
|
"DeiTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.dinat"].extend(
|
|
[
|
|
"DINAT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DinatForImageClassification",
|
|
"DinatModel",
|
|
"DinatPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.distilbert"].extend(
|
|
[
|
|
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DistilBertForMaskedLM",
|
|
"DistilBertForMultipleChoice",
|
|
"DistilBertForQuestionAnswering",
|
|
"DistilBertForSequenceClassification",
|
|
"DistilBertForTokenClassification",
|
|
"DistilBertModel",
|
|
"DistilBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.donut"].extend(
|
|
[
|
|
"DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DonutSwinModel",
|
|
"DonutSwinPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.dpr"].extend(
|
|
[
|
|
"DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DPRContextEncoder",
|
|
"DPRPretrainedContextEncoder",
|
|
"DPRPreTrainedModel",
|
|
"DPRPretrainedQuestionEncoder",
|
|
"DPRPretrainedReader",
|
|
"DPRQuestionEncoder",
|
|
"DPRReader",
|
|
]
|
|
)
|
|
_import_structure["models.dpt"].extend(
|
|
[
|
|
"DPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"DPTForDepthEstimation",
|
|
"DPTForSemanticSegmentation",
|
|
"DPTModel",
|
|
"DPTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.electra"].extend(
|
|
[
|
|
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ElectraForCausalLM",
|
|
"ElectraForMaskedLM",
|
|
"ElectraForMultipleChoice",
|
|
"ElectraForPreTraining",
|
|
"ElectraForQuestionAnswering",
|
|
"ElectraForSequenceClassification",
|
|
"ElectraForTokenClassification",
|
|
"ElectraModel",
|
|
"ElectraPreTrainedModel",
|
|
"load_tf_weights_in_electra",
|
|
]
|
|
)
|
|
_import_structure["models.encoder_decoder"].append("EncoderDecoderModel")
|
|
_import_structure["models.ernie"].extend(
|
|
[
|
|
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ErnieForCausalLM",
|
|
"ErnieForMaskedLM",
|
|
"ErnieForMultipleChoice",
|
|
"ErnieForNextSentencePrediction",
|
|
"ErnieForPreTraining",
|
|
"ErnieForQuestionAnswering",
|
|
"ErnieForSequenceClassification",
|
|
"ErnieForTokenClassification",
|
|
"ErnieModel",
|
|
"ErniePreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.esm"].extend(
|
|
[
|
|
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"EsmFoldPreTrainedModel",
|
|
"EsmForMaskedLM",
|
|
"EsmForProteinFolding",
|
|
"EsmForSequenceClassification",
|
|
"EsmForTokenClassification",
|
|
"EsmModel",
|
|
"EsmPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.flaubert"].extend(
|
|
[
|
|
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"FlaubertForMultipleChoice",
|
|
"FlaubertForQuestionAnswering",
|
|
"FlaubertForQuestionAnsweringSimple",
|
|
"FlaubertForSequenceClassification",
|
|
"FlaubertForTokenClassification",
|
|
"FlaubertModel",
|
|
"FlaubertPreTrainedModel",
|
|
"FlaubertWithLMHeadModel",
|
|
]
|
|
)
|
|
_import_structure["models.flava"].extend(
|
|
[
|
|
"FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"FlavaForPreTraining",
|
|
"FlavaImageCodebook",
|
|
"FlavaImageModel",
|
|
"FlavaModel",
|
|
"FlavaMultimodalModel",
|
|
"FlavaPreTrainedModel",
|
|
"FlavaTextModel",
|
|
]
|
|
)
|
|
_import_structure["models.fnet"].extend(
|
|
[
|
|
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"FNetForMaskedLM",
|
|
"FNetForMultipleChoice",
|
|
"FNetForNextSentencePrediction",
|
|
"FNetForPreTraining",
|
|
"FNetForQuestionAnswering",
|
|
"FNetForSequenceClassification",
|
|
"FNetForTokenClassification",
|
|
"FNetLayer",
|
|
"FNetModel",
|
|
"FNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
|
|
_import_structure["models.funnel"].extend(
|
|
[
|
|
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"FunnelBaseModel",
|
|
"FunnelForMaskedLM",
|
|
"FunnelForMultipleChoice",
|
|
"FunnelForPreTraining",
|
|
"FunnelForQuestionAnswering",
|
|
"FunnelForSequenceClassification",
|
|
"FunnelForTokenClassification",
|
|
"FunnelModel",
|
|
"FunnelPreTrainedModel",
|
|
"load_tf_weights_in_funnel",
|
|
]
|
|
)
|
|
_import_structure["models.glpn"].extend(
|
|
[
|
|
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GLPNForDepthEstimation",
|
|
"GLPNModel",
|
|
"GLPNPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.gpt2"].extend(
|
|
[
|
|
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GPT2DoubleHeadsModel",
|
|
"GPT2ForSequenceClassification",
|
|
"GPT2ForTokenClassification",
|
|
"GPT2LMHeadModel",
|
|
"GPT2Model",
|
|
"GPT2PreTrainedModel",
|
|
"load_tf_weights_in_gpt2",
|
|
]
|
|
)
|
|
_import_structure["models.gpt_neo"].extend(
|
|
[
|
|
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GPTNeoForCausalLM",
|
|
"GPTNeoForSequenceClassification",
|
|
"GPTNeoModel",
|
|
"GPTNeoPreTrainedModel",
|
|
"load_tf_weights_in_gpt_neo",
|
|
]
|
|
)
|
|
_import_structure["models.gpt_neox"].extend(
|
|
[
|
|
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GPTNeoXForCausalLM",
|
|
"GPTNeoXLayer",
|
|
"GPTNeoXModel",
|
|
"GPTNeoXPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.gpt_neox_japanese"].extend(
|
|
[
|
|
"GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GPTNeoXJapaneseForCausalLM",
|
|
"GPTNeoXJapaneseLayer",
|
|
"GPTNeoXJapaneseModel",
|
|
"GPTNeoXJapanesePreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.gptj"].extend(
|
|
[
|
|
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GPTJForCausalLM",
|
|
"GPTJForQuestionAnswering",
|
|
"GPTJForSequenceClassification",
|
|
"GPTJModel",
|
|
"GPTJPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.groupvit"].extend(
|
|
[
|
|
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"GroupViTModel",
|
|
"GroupViTPreTrainedModel",
|
|
"GroupViTTextModel",
|
|
"GroupViTVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.hubert"].extend(
|
|
[
|
|
"HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"HubertForCTC",
|
|
"HubertForSequenceClassification",
|
|
"HubertModel",
|
|
"HubertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.ibert"].extend(
|
|
[
|
|
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"IBertForMaskedLM",
|
|
"IBertForMultipleChoice",
|
|
"IBertForQuestionAnswering",
|
|
"IBertForSequenceClassification",
|
|
"IBertForTokenClassification",
|
|
"IBertModel",
|
|
"IBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.imagegpt"].extend(
|
|
[
|
|
"IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ImageGPTForCausalImageModeling",
|
|
"ImageGPTForImageClassification",
|
|
"ImageGPTModel",
|
|
"ImageGPTPreTrainedModel",
|
|
"load_tf_weights_in_imagegpt",
|
|
]
|
|
)
|
|
_import_structure["models.jukebox"].extend(
|
|
[
|
|
"JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"JukeboxModel",
|
|
"JukeboxPreTrainedModel",
|
|
"JukeboxPrior",
|
|
"JukeboxVQVAE",
|
|
]
|
|
)
|
|
_import_structure["models.layoutlm"].extend(
|
|
[
|
|
"LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LayoutLMForMaskedLM",
|
|
"LayoutLMForQuestionAnswering",
|
|
"LayoutLMForSequenceClassification",
|
|
"LayoutLMForTokenClassification",
|
|
"LayoutLMModel",
|
|
"LayoutLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.layoutlmv2"].extend(
|
|
[
|
|
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LayoutLMv2ForQuestionAnswering",
|
|
"LayoutLMv2ForSequenceClassification",
|
|
"LayoutLMv2ForTokenClassification",
|
|
"LayoutLMv2Model",
|
|
"LayoutLMv2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.layoutlmv3"].extend(
|
|
[
|
|
"LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LayoutLMv3ForQuestionAnswering",
|
|
"LayoutLMv3ForSequenceClassification",
|
|
"LayoutLMv3ForTokenClassification",
|
|
"LayoutLMv3Model",
|
|
"LayoutLMv3PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.led"].extend(
|
|
[
|
|
"LED_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LEDForConditionalGeneration",
|
|
"LEDForQuestionAnswering",
|
|
"LEDForSequenceClassification",
|
|
"LEDModel",
|
|
"LEDPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.levit"].extend(
|
|
[
|
|
"LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LevitForImageClassification",
|
|
"LevitForImageClassificationWithTeacher",
|
|
"LevitModel",
|
|
"LevitPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.lilt"].extend(
|
|
[
|
|
"LILT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LiltForQuestionAnswering",
|
|
"LiltForSequenceClassification",
|
|
"LiltForTokenClassification",
|
|
"LiltModel",
|
|
"LiltPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.longformer"].extend(
|
|
[
|
|
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LongformerForMaskedLM",
|
|
"LongformerForMultipleChoice",
|
|
"LongformerForQuestionAnswering",
|
|
"LongformerForSequenceClassification",
|
|
"LongformerForTokenClassification",
|
|
"LongformerModel",
|
|
"LongformerPreTrainedModel",
|
|
"LongformerSelfAttention",
|
|
]
|
|
)
|
|
_import_structure["models.longt5"].extend(
|
|
[
|
|
"LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LongT5EncoderModel",
|
|
"LongT5ForConditionalGeneration",
|
|
"LongT5Model",
|
|
"LongT5PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.luke"].extend(
|
|
[
|
|
"LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"LukeForEntityClassification",
|
|
"LukeForEntityPairClassification",
|
|
"LukeForEntitySpanClassification",
|
|
"LukeForMaskedLM",
|
|
"LukeForMultipleChoice",
|
|
"LukeForQuestionAnswering",
|
|
"LukeForSequenceClassification",
|
|
"LukeForTokenClassification",
|
|
"LukeModel",
|
|
"LukePreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.lxmert"].extend(
|
|
[
|
|
"LxmertEncoder",
|
|
"LxmertForPreTraining",
|
|
"LxmertForQuestionAnswering",
|
|
"LxmertModel",
|
|
"LxmertPreTrainedModel",
|
|
"LxmertVisualFeatureEncoder",
|
|
"LxmertXLayer",
|
|
]
|
|
)
|
|
_import_structure["models.m2m_100"].extend(
|
|
[
|
|
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"M2M100ForConditionalGeneration",
|
|
"M2M100Model",
|
|
"M2M100PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"])
|
|
_import_structure["models.markuplm"].extend(
|
|
[
|
|
"MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MarkupLMForQuestionAnswering",
|
|
"MarkupLMForSequenceClassification",
|
|
"MarkupLMForTokenClassification",
|
|
"MarkupLMModel",
|
|
"MarkupLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.maskformer"].extend(
|
|
[
|
|
"MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MaskFormerForInstanceSegmentation",
|
|
"MaskFormerModel",
|
|
"MaskFormerPreTrainedModel",
|
|
"MaskFormerSwinBackbone",
|
|
]
|
|
)
|
|
_import_structure["models.mbart"].extend(
|
|
[
|
|
"MBartForCausalLM",
|
|
"MBartForConditionalGeneration",
|
|
"MBartForQuestionAnswering",
|
|
"MBartForSequenceClassification",
|
|
"MBartModel",
|
|
"MBartPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mctct"].extend(
|
|
[
|
|
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MCTCTForCTC",
|
|
"MCTCTModel",
|
|
"MCTCTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.megatron_bert"].extend(
|
|
[
|
|
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MegatronBertForCausalLM",
|
|
"MegatronBertForMaskedLM",
|
|
"MegatronBertForMultipleChoice",
|
|
"MegatronBertForNextSentencePrediction",
|
|
"MegatronBertForPreTraining",
|
|
"MegatronBertForQuestionAnswering",
|
|
"MegatronBertForSequenceClassification",
|
|
"MegatronBertForTokenClassification",
|
|
"MegatronBertModel",
|
|
"MegatronBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"])
|
|
_import_structure["models.mobilebert"].extend(
|
|
[
|
|
"MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MobileBertForMaskedLM",
|
|
"MobileBertForMultipleChoice",
|
|
"MobileBertForNextSentencePrediction",
|
|
"MobileBertForPreTraining",
|
|
"MobileBertForQuestionAnswering",
|
|
"MobileBertForSequenceClassification",
|
|
"MobileBertForTokenClassification",
|
|
"MobileBertLayer",
|
|
"MobileBertModel",
|
|
"MobileBertPreTrainedModel",
|
|
"load_tf_weights_in_mobilebert",
|
|
]
|
|
)
|
|
_import_structure["models.mobilenet_v1"].extend(
|
|
[
|
|
"MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MobileNetV1ForImageClassification",
|
|
"MobileNetV1Model",
|
|
"MobileNetV1PreTrainedModel",
|
|
"load_tf_weights_in_mobilenet_v1",
|
|
]
|
|
)
|
|
_import_structure["models.mobilenet_v2"].extend(
|
|
[
|
|
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MobileNetV2ForImageClassification",
|
|
"MobileNetV2ForSemanticSegmentation",
|
|
"MobileNetV2Model",
|
|
"MobileNetV2PreTrainedModel",
|
|
"load_tf_weights_in_mobilenet_v2",
|
|
]
|
|
)
|
|
_import_structure["models.mobilevit"].extend(
|
|
[
|
|
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MobileViTForImageClassification",
|
|
"MobileViTForSemanticSegmentation",
|
|
"MobileViTModel",
|
|
"MobileViTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mpnet"].extend(
|
|
[
|
|
"MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MPNetForMaskedLM",
|
|
"MPNetForMultipleChoice",
|
|
"MPNetForQuestionAnswering",
|
|
"MPNetForSequenceClassification",
|
|
"MPNetForTokenClassification",
|
|
"MPNetLayer",
|
|
"MPNetModel",
|
|
"MPNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mt5"].extend(["MT5EncoderModel", "MT5ForConditionalGeneration", "MT5Model"])
|
|
_import_structure["models.mvp"].extend(
|
|
[
|
|
"MVP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"MvpForCausalLM",
|
|
"MvpForConditionalGeneration",
|
|
"MvpForQuestionAnswering",
|
|
"MvpForSequenceClassification",
|
|
"MvpModel",
|
|
"MvpPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.nat"].extend(
|
|
[
|
|
"NAT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"NatForImageClassification",
|
|
"NatModel",
|
|
"NatPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.nezha"].extend(
|
|
[
|
|
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"NezhaForMaskedLM",
|
|
"NezhaForMultipleChoice",
|
|
"NezhaForNextSentencePrediction",
|
|
"NezhaForPreTraining",
|
|
"NezhaForQuestionAnswering",
|
|
"NezhaForSequenceClassification",
|
|
"NezhaForTokenClassification",
|
|
"NezhaModel",
|
|
"NezhaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.nystromformer"].extend(
|
|
[
|
|
"NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"NystromformerForMaskedLM",
|
|
"NystromformerForMultipleChoice",
|
|
"NystromformerForQuestionAnswering",
|
|
"NystromformerForSequenceClassification",
|
|
"NystromformerForTokenClassification",
|
|
"NystromformerLayer",
|
|
"NystromformerModel",
|
|
"NystromformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.openai"].extend(
|
|
[
|
|
"OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"OpenAIGPTDoubleHeadsModel",
|
|
"OpenAIGPTForSequenceClassification",
|
|
"OpenAIGPTLMHeadModel",
|
|
"OpenAIGPTModel",
|
|
"OpenAIGPTPreTrainedModel",
|
|
"load_tf_weights_in_openai_gpt",
|
|
]
|
|
)
|
|
_import_structure["models.opt"].extend(
|
|
[
|
|
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"OPTForCausalLM",
|
|
"OPTForQuestionAnswering",
|
|
"OPTForSequenceClassification",
|
|
"OPTModel",
|
|
"OPTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.owlvit"].extend(
|
|
[
|
|
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"OwlViTForObjectDetection",
|
|
"OwlViTModel",
|
|
"OwlViTPreTrainedModel",
|
|
"OwlViTTextModel",
|
|
"OwlViTVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.pegasus"].extend(
|
|
["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"]
|
|
)
|
|
_import_structure["models.pegasus_x"].extend(
|
|
[
|
|
"PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"PegasusXForConditionalGeneration",
|
|
"PegasusXModel",
|
|
"PegasusXPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.perceiver"].extend(
|
|
[
|
|
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"PerceiverForImageClassificationConvProcessing",
|
|
"PerceiverForImageClassificationFourier",
|
|
"PerceiverForImageClassificationLearned",
|
|
"PerceiverForMaskedLM",
|
|
"PerceiverForMultimodalAutoencoding",
|
|
"PerceiverForOpticalFlow",
|
|
"PerceiverForSequenceClassification",
|
|
"PerceiverLayer",
|
|
"PerceiverModel",
|
|
"PerceiverPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.plbart"].extend(
|
|
[
|
|
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"PLBartForCausalLM",
|
|
"PLBartForConditionalGeneration",
|
|
"PLBartForSequenceClassification",
|
|
"PLBartModel",
|
|
"PLBartPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.poolformer"].extend(
|
|
[
|
|
"POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"PoolFormerForImageClassification",
|
|
"PoolFormerModel",
|
|
"PoolFormerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.prophetnet"].extend(
|
|
[
|
|
"PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ProphetNetDecoder",
|
|
"ProphetNetEncoder",
|
|
"ProphetNetForCausalLM",
|
|
"ProphetNetForConditionalGeneration",
|
|
"ProphetNetModel",
|
|
"ProphetNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.qdqbert"].extend(
|
|
[
|
|
"QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"QDQBertForMaskedLM",
|
|
"QDQBertForMultipleChoice",
|
|
"QDQBertForNextSentencePrediction",
|
|
"QDQBertForQuestionAnswering",
|
|
"QDQBertForSequenceClassification",
|
|
"QDQBertForTokenClassification",
|
|
"QDQBertLayer",
|
|
"QDQBertLMHeadModel",
|
|
"QDQBertModel",
|
|
"QDQBertPreTrainedModel",
|
|
"load_tf_weights_in_qdqbert",
|
|
]
|
|
)
|
|
_import_structure["models.rag"].extend(
|
|
["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"]
|
|
)
|
|
_import_structure["models.realm"].extend(
|
|
[
|
|
"REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RealmEmbedder",
|
|
"RealmForOpenQA",
|
|
"RealmKnowledgeAugEncoder",
|
|
"RealmPreTrainedModel",
|
|
"RealmReader",
|
|
"RealmRetriever",
|
|
"RealmScorer",
|
|
"load_tf_weights_in_realm",
|
|
]
|
|
)
|
|
_import_structure["models.reformer"].extend(
|
|
[
|
|
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ReformerAttention",
|
|
"ReformerForMaskedLM",
|
|
"ReformerForQuestionAnswering",
|
|
"ReformerForSequenceClassification",
|
|
"ReformerLayer",
|
|
"ReformerModel",
|
|
"ReformerModelWithLMHead",
|
|
"ReformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.regnet"].extend(
|
|
[
|
|
"REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RegNetForImageClassification",
|
|
"RegNetModel",
|
|
"RegNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.rembert"].extend(
|
|
[
|
|
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RemBertForCausalLM",
|
|
"RemBertForMaskedLM",
|
|
"RemBertForMultipleChoice",
|
|
"RemBertForQuestionAnswering",
|
|
"RemBertForSequenceClassification",
|
|
"RemBertForTokenClassification",
|
|
"RemBertLayer",
|
|
"RemBertModel",
|
|
"RemBertPreTrainedModel",
|
|
"load_tf_weights_in_rembert",
|
|
]
|
|
)
|
|
_import_structure["models.resnet"].extend(
|
|
[
|
|
"RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ResNetBackbone",
|
|
"ResNetForImageClassification",
|
|
"ResNetModel",
|
|
"ResNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.retribert"].extend(
|
|
["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"]
|
|
)
|
|
_import_structure["models.roberta"].extend(
|
|
[
|
|
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RobertaForCausalLM",
|
|
"RobertaForMaskedLM",
|
|
"RobertaForMultipleChoice",
|
|
"RobertaForQuestionAnswering",
|
|
"RobertaForSequenceClassification",
|
|
"RobertaForTokenClassification",
|
|
"RobertaModel",
|
|
"RobertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.roc_bert"].extend(
|
|
[
|
|
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RoCBertForCausalLM",
|
|
"RoCBertForMaskedLM",
|
|
"RoCBertForMultipleChoice",
|
|
"RoCBertForPreTraining",
|
|
"RoCBertForQuestionAnswering",
|
|
"RoCBertForSequenceClassification",
|
|
"RoCBertForTokenClassification",
|
|
"RoCBertLayer",
|
|
"RoCBertModel",
|
|
"RoCBertPreTrainedModel",
|
|
"load_tf_weights_in_roc_bert",
|
|
]
|
|
)
|
|
_import_structure["models.roformer"].extend(
|
|
[
|
|
"ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"RoFormerForCausalLM",
|
|
"RoFormerForMaskedLM",
|
|
"RoFormerForMultipleChoice",
|
|
"RoFormerForQuestionAnswering",
|
|
"RoFormerForSequenceClassification",
|
|
"RoFormerForTokenClassification",
|
|
"RoFormerLayer",
|
|
"RoFormerModel",
|
|
"RoFormerPreTrainedModel",
|
|
"load_tf_weights_in_roformer",
|
|
]
|
|
)
|
|
_import_structure["models.segformer"].extend(
|
|
[
|
|
"SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SegformerDecodeHead",
|
|
"SegformerForImageClassification",
|
|
"SegformerForSemanticSegmentation",
|
|
"SegformerLayer",
|
|
"SegformerModel",
|
|
"SegformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.sew"].extend(
|
|
[
|
|
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SEWForCTC",
|
|
"SEWForSequenceClassification",
|
|
"SEWModel",
|
|
"SEWPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.sew_d"].extend(
|
|
[
|
|
"SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SEWDForCTC",
|
|
"SEWDForSequenceClassification",
|
|
"SEWDModel",
|
|
"SEWDPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.speech_encoder_decoder"].extend(["SpeechEncoderDecoderModel"])
|
|
_import_structure["models.speech_to_text"].extend(
|
|
[
|
|
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"Speech2TextForConditionalGeneration",
|
|
"Speech2TextModel",
|
|
"Speech2TextPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.speech_to_text_2"].extend(["Speech2Text2ForCausalLM", "Speech2Text2PreTrainedModel"])
|
|
_import_structure["models.splinter"].extend(
|
|
[
|
|
"SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SplinterForPreTraining",
|
|
"SplinterForQuestionAnswering",
|
|
"SplinterLayer",
|
|
"SplinterModel",
|
|
"SplinterPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.squeezebert"].extend(
|
|
[
|
|
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SqueezeBertForMaskedLM",
|
|
"SqueezeBertForMultipleChoice",
|
|
"SqueezeBertForQuestionAnswering",
|
|
"SqueezeBertForSequenceClassification",
|
|
"SqueezeBertForTokenClassification",
|
|
"SqueezeBertModel",
|
|
"SqueezeBertModule",
|
|
"SqueezeBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.swin"].extend(
|
|
[
|
|
"SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SwinForImageClassification",
|
|
"SwinForMaskedImageModeling",
|
|
"SwinModel",
|
|
"SwinPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.swinv2"].extend(
|
|
[
|
|
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"Swinv2ForImageClassification",
|
|
"Swinv2ForMaskedImageModeling",
|
|
"Swinv2Model",
|
|
"Swinv2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.switch_transformers"].extend(
|
|
[
|
|
"SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"SwitchTransformersEncoderModel",
|
|
"SwitchTransformersForConditionalGeneration",
|
|
"SwitchTransformersModel",
|
|
"SwitchTransformersPreTrainedModel",
|
|
"SwitchTransformersSparseMLP",
|
|
"SwitchTransformersTop1Router",
|
|
]
|
|
)
|
|
_import_structure["models.t5"].extend(
|
|
[
|
|
"T5_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"T5EncoderModel",
|
|
"T5ForConditionalGeneration",
|
|
"T5Model",
|
|
"T5PreTrainedModel",
|
|
"load_tf_weights_in_t5",
|
|
]
|
|
)
|
|
_import_structure["models.tapas"].extend(
|
|
[
|
|
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TapasForMaskedLM",
|
|
"TapasForQuestionAnswering",
|
|
"TapasForSequenceClassification",
|
|
"TapasModel",
|
|
"TapasPreTrainedModel",
|
|
"load_tf_weights_in_tapas",
|
|
]
|
|
)
|
|
_import_structure["models.time_series_transformer"].extend(
|
|
[
|
|
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TimeSeriesTransformerForPrediction",
|
|
"TimeSeriesTransformerModel",
|
|
"TimeSeriesTransformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.trajectory_transformer"].extend(
|
|
[
|
|
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TrajectoryTransformerModel",
|
|
"TrajectoryTransformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.transfo_xl"].extend(
|
|
[
|
|
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"AdaptiveEmbedding",
|
|
"TransfoXLForSequenceClassification",
|
|
"TransfoXLLMHeadModel",
|
|
"TransfoXLModel",
|
|
"TransfoXLPreTrainedModel",
|
|
"load_tf_weights_in_transfo_xl",
|
|
]
|
|
)
|
|
_import_structure["models.trocr"].extend(
|
|
["TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel"]
|
|
)
|
|
_import_structure["models.unispeech"].extend(
|
|
[
|
|
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"UniSpeechForCTC",
|
|
"UniSpeechForPreTraining",
|
|
"UniSpeechForSequenceClassification",
|
|
"UniSpeechModel",
|
|
"UniSpeechPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.unispeech_sat"].extend(
|
|
[
|
|
"UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"UniSpeechSatForAudioFrameClassification",
|
|
"UniSpeechSatForCTC",
|
|
"UniSpeechSatForPreTraining",
|
|
"UniSpeechSatForSequenceClassification",
|
|
"UniSpeechSatForXVector",
|
|
"UniSpeechSatModel",
|
|
"UniSpeechSatPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.van"].extend(
|
|
[
|
|
"VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"VanForImageClassification",
|
|
"VanModel",
|
|
"VanPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.videomae"].extend(
|
|
[
|
|
"VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"VideoMAEForPreTraining",
|
|
"VideoMAEForVideoClassification",
|
|
"VideoMAEModel",
|
|
"VideoMAEPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vilt"].extend(
|
|
[
|
|
"VILT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ViltForImageAndTextRetrieval",
|
|
"ViltForImagesAndTextClassification",
|
|
"ViltForMaskedLM",
|
|
"ViltForQuestionAnswering",
|
|
"ViltForTokenClassification",
|
|
"ViltLayer",
|
|
"ViltModel",
|
|
"ViltPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vision_encoder_decoder"].extend(["VisionEncoderDecoderModel"])
|
|
_import_structure["models.vision_text_dual_encoder"].extend(["VisionTextDualEncoderModel"])
|
|
_import_structure["models.visual_bert"].extend(
|
|
[
|
|
"VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"VisualBertForMultipleChoice",
|
|
"VisualBertForPreTraining",
|
|
"VisualBertForQuestionAnswering",
|
|
"VisualBertForRegionToPhraseAlignment",
|
|
"VisualBertForVisualReasoning",
|
|
"VisualBertLayer",
|
|
"VisualBertModel",
|
|
"VisualBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vit"].extend(
|
|
[
|
|
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ViTForImageClassification",
|
|
"ViTForMaskedImageModeling",
|
|
"ViTModel",
|
|
"ViTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vit_mae"].extend(
|
|
[
|
|
"VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ViTMAEForPreTraining",
|
|
"ViTMAELayer",
|
|
"ViTMAEModel",
|
|
"ViTMAEPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vit_msn"].extend(
|
|
[
|
|
"VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"ViTMSNForImageClassification",
|
|
"ViTMSNModel",
|
|
"ViTMSNPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.wav2vec2"].extend(
|
|
[
|
|
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"Wav2Vec2ForAudioFrameClassification",
|
|
"Wav2Vec2ForCTC",
|
|
"Wav2Vec2ForMaskedLM",
|
|
"Wav2Vec2ForPreTraining",
|
|
"Wav2Vec2ForSequenceClassification",
|
|
"Wav2Vec2ForXVector",
|
|
"Wav2Vec2Model",
|
|
"Wav2Vec2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.wav2vec2_conformer"].extend(
|
|
[
|
|
"WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"Wav2Vec2ConformerForAudioFrameClassification",
|
|
"Wav2Vec2ConformerForCTC",
|
|
"Wav2Vec2ConformerForPreTraining",
|
|
"Wav2Vec2ConformerForSequenceClassification",
|
|
"Wav2Vec2ConformerForXVector",
|
|
"Wav2Vec2ConformerModel",
|
|
"Wav2Vec2ConformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.wavlm"].extend(
|
|
[
|
|
"WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"WavLMForAudioFrameClassification",
|
|
"WavLMForCTC",
|
|
"WavLMForSequenceClassification",
|
|
"WavLMForXVector",
|
|
"WavLMModel",
|
|
"WavLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.whisper"].extend(
|
|
[
|
|
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"WhisperForConditionalGeneration",
|
|
"WhisperModel",
|
|
"WhisperPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.x_clip"].extend(
|
|
[
|
|
"XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XCLIPModel",
|
|
"XCLIPPreTrainedModel",
|
|
"XCLIPTextModel",
|
|
"XCLIPVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.xglm"].extend(
|
|
[
|
|
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XGLMForCausalLM",
|
|
"XGLMModel",
|
|
"XGLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm"].extend(
|
|
[
|
|
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XLMForMultipleChoice",
|
|
"XLMForQuestionAnswering",
|
|
"XLMForQuestionAnsweringSimple",
|
|
"XLMForSequenceClassification",
|
|
"XLMForTokenClassification",
|
|
"XLMModel",
|
|
"XLMPreTrainedModel",
|
|
"XLMWithLMHeadModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm_prophetnet"].extend(
|
|
[
|
|
"XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XLMProphetNetDecoder",
|
|
"XLMProphetNetEncoder",
|
|
"XLMProphetNetForCausalLM",
|
|
"XLMProphetNetForConditionalGeneration",
|
|
"XLMProphetNetModel",
|
|
"XLMProphetNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm_roberta"].extend(
|
|
[
|
|
"XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XLMRobertaForCausalLM",
|
|
"XLMRobertaForMaskedLM",
|
|
"XLMRobertaForMultipleChoice",
|
|
"XLMRobertaForQuestionAnswering",
|
|
"XLMRobertaForSequenceClassification",
|
|
"XLMRobertaForTokenClassification",
|
|
"XLMRobertaModel",
|
|
"XLMRobertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm_roberta_xl"].extend(
|
|
[
|
|
"XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XLMRobertaXLForCausalLM",
|
|
"XLMRobertaXLForMaskedLM",
|
|
"XLMRobertaXLForMultipleChoice",
|
|
"XLMRobertaXLForQuestionAnswering",
|
|
"XLMRobertaXLForSequenceClassification",
|
|
"XLMRobertaXLForTokenClassification",
|
|
"XLMRobertaXLModel",
|
|
"XLMRobertaXLPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlnet"].extend(
|
|
[
|
|
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"XLNetForMultipleChoice",
|
|
"XLNetForQuestionAnswering",
|
|
"XLNetForQuestionAnsweringSimple",
|
|
"XLNetForSequenceClassification",
|
|
"XLNetForTokenClassification",
|
|
"XLNetLMHeadModel",
|
|
"XLNetModel",
|
|
"XLNetPreTrainedModel",
|
|
"load_tf_weights_in_xlnet",
|
|
]
|
|
)
|
|
_import_structure["models.yolos"].extend(
|
|
[
|
|
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"YolosForObjectDetection",
|
|
"YolosModel",
|
|
"YolosPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.yoso"].extend(
|
|
[
|
|
"YOSO_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"YosoForMaskedLM",
|
|
"YosoForMultipleChoice",
|
|
"YosoForQuestionAnswering",
|
|
"YosoForSequenceClassification",
|
|
"YosoForTokenClassification",
|
|
"YosoLayer",
|
|
"YosoModel",
|
|
"YosoPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["optimization"] = [
|
|
"Adafactor",
|
|
"AdamW",
|
|
"get_constant_schedule",
|
|
"get_constant_schedule_with_warmup",
|
|
"get_cosine_schedule_with_warmup",
|
|
"get_cosine_with_hard_restarts_schedule_with_warmup",
|
|
"get_linear_schedule_with_warmup",
|
|
"get_polynomial_decay_schedule_with_warmup",
|
|
"get_scheduler",
|
|
]
|
|
_import_structure["pytorch_utils"] = ["Conv1D", "apply_chunking_to_forward", "prune_layer"]
|
|
_import_structure["sagemaker"] = []
|
|
_import_structure["trainer"] = ["Trainer"]
|
|
_import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
|
|
_import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]
|
|
|
|
# TensorFlow-backed objects
|
|
try:
|
|
if not is_tf_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_tf_objects
|
|
|
|
_import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]
|
|
else:
|
|
_import_structure["activations_tf"] = []
|
|
_import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"]
|
|
_import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"]
|
|
_import_structure["generation"].extend(
|
|
[
|
|
"TFForcedBOSTokenLogitsProcessor",
|
|
"TFForcedEOSTokenLogitsProcessor",
|
|
"TFGenerationMixin",
|
|
"TFLogitsProcessor",
|
|
"TFLogitsProcessorList",
|
|
"TFLogitsWarper",
|
|
"TFMinLengthLogitsProcessor",
|
|
"TFNoBadWordsLogitsProcessor",
|
|
"TFNoRepeatNGramLogitsProcessor",
|
|
"TFRepetitionPenaltyLogitsProcessor",
|
|
"TFTemperatureLogitsWarper",
|
|
"TFTopKLogitsWarper",
|
|
"TFTopPLogitsWarper",
|
|
"tf_top_k_top_p_filtering",
|
|
]
|
|
)
|
|
_import_structure["generation_tf_utils"] = []
|
|
_import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"]
|
|
_import_structure["modeling_tf_outputs"] = []
|
|
_import_structure["modeling_tf_utils"] = [
|
|
"TFPreTrainedModel",
|
|
"TFSequenceSummary",
|
|
"TFSharedEmbeddings",
|
|
"shape_list",
|
|
]
|
|
# TensorFlow models structure
|
|
_import_structure["models.albert"].extend(
|
|
[
|
|
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFAlbertForMaskedLM",
|
|
"TFAlbertForMultipleChoice",
|
|
"TFAlbertForPreTraining",
|
|
"TFAlbertForQuestionAnswering",
|
|
"TFAlbertForSequenceClassification",
|
|
"TFAlbertForTokenClassification",
|
|
"TFAlbertMainLayer",
|
|
"TFAlbertModel",
|
|
"TFAlbertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.auto"].extend(
|
|
[
|
|
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
|
|
"TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
|
|
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
|
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
|
|
"TF_MODEL_FOR_MASKED_LM_MAPPING",
|
|
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
|
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
|
|
"TF_MODEL_FOR_PRETRAINING_MAPPING",
|
|
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
|
|
"TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
|
|
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
|
|
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
|
|
"TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
|
|
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
|
|
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
|
|
"TF_MODEL_FOR_VISION_2_SEQ_MAPPING",
|
|
"TF_MODEL_MAPPING",
|
|
"TF_MODEL_WITH_LM_HEAD_MAPPING",
|
|
"TFAutoModel",
|
|
"TFAutoModelForCausalLM",
|
|
"TFAutoModelForDocumentQuestionAnswering",
|
|
"TFAutoModelForImageClassification",
|
|
"TFAutoModelForMaskedLM",
|
|
"TFAutoModelForMultipleChoice",
|
|
"TFAutoModelForNextSentencePrediction",
|
|
"TFAutoModelForPreTraining",
|
|
"TFAutoModelForQuestionAnswering",
|
|
"TFAutoModelForSemanticSegmentation",
|
|
"TFAutoModelForSeq2SeqLM",
|
|
"TFAutoModelForSequenceClassification",
|
|
"TFAutoModelForSpeechSeq2Seq",
|
|
"TFAutoModelForTableQuestionAnswering",
|
|
"TFAutoModelForTokenClassification",
|
|
"TFAutoModelForVision2Seq",
|
|
"TFAutoModelWithLMHead",
|
|
]
|
|
)
|
|
_import_structure["models.bart"].extend(["TFBartForConditionalGeneration", "TFBartModel", "TFBartPretrainedModel"])
|
|
_import_structure["models.bert"].extend(
|
|
[
|
|
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFBertEmbeddings",
|
|
"TFBertForMaskedLM",
|
|
"TFBertForMultipleChoice",
|
|
"TFBertForNextSentencePrediction",
|
|
"TFBertForPreTraining",
|
|
"TFBertForQuestionAnswering",
|
|
"TFBertForSequenceClassification",
|
|
"TFBertForTokenClassification",
|
|
"TFBertLMHeadModel",
|
|
"TFBertMainLayer",
|
|
"TFBertModel",
|
|
"TFBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.blenderbot"].extend(
|
|
["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel"]
|
|
)
|
|
_import_structure["models.blenderbot_small"].extend(
|
|
["TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel"]
|
|
)
|
|
_import_structure["models.camembert"].extend(
|
|
[
|
|
"TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFCamembertForCausalLM",
|
|
"TFCamembertForMaskedLM",
|
|
"TFCamembertForMultipleChoice",
|
|
"TFCamembertForQuestionAnswering",
|
|
"TFCamembertForSequenceClassification",
|
|
"TFCamembertForTokenClassification",
|
|
"TFCamembertModel",
|
|
"TFCamembertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.clip"].extend(
|
|
[
|
|
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFCLIPModel",
|
|
"TFCLIPPreTrainedModel",
|
|
"TFCLIPTextModel",
|
|
"TFCLIPVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.convbert"].extend(
|
|
[
|
|
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFConvBertForMaskedLM",
|
|
"TFConvBertForMultipleChoice",
|
|
"TFConvBertForQuestionAnswering",
|
|
"TFConvBertForSequenceClassification",
|
|
"TFConvBertForTokenClassification",
|
|
"TFConvBertLayer",
|
|
"TFConvBertModel",
|
|
"TFConvBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.convnext"].extend(
|
|
[
|
|
"TFConvNextForImageClassification",
|
|
"TFConvNextModel",
|
|
"TFConvNextPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.ctrl"].extend(
|
|
[
|
|
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFCTRLForSequenceClassification",
|
|
"TFCTRLLMHeadModel",
|
|
"TFCTRLModel",
|
|
"TFCTRLPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.cvt"].extend(
|
|
[
|
|
"TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFCvtForImageClassification",
|
|
"TFCvtModel",
|
|
"TFCvtPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.data2vec"].extend(
|
|
[
|
|
"TFData2VecVisionForImageClassification",
|
|
"TFData2VecVisionForSemanticSegmentation",
|
|
"TFData2VecVisionModel",
|
|
"TFData2VecVisionPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deberta"].extend(
|
|
[
|
|
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFDebertaForMaskedLM",
|
|
"TFDebertaForQuestionAnswering",
|
|
"TFDebertaForSequenceClassification",
|
|
"TFDebertaForTokenClassification",
|
|
"TFDebertaModel",
|
|
"TFDebertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deberta_v2"].extend(
|
|
[
|
|
"TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFDebertaV2ForMaskedLM",
|
|
"TFDebertaV2ForQuestionAnswering",
|
|
"TFDebertaV2ForSequenceClassification",
|
|
"TFDebertaV2ForTokenClassification",
|
|
"TFDebertaV2Model",
|
|
"TFDebertaV2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.deit"].extend(
|
|
[
|
|
"TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFDeiTForImageClassification",
|
|
"TFDeiTForImageClassificationWithTeacher",
|
|
"TFDeiTForMaskedImageModeling",
|
|
"TFDeiTModel",
|
|
"TFDeiTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.distilbert"].extend(
|
|
[
|
|
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFDistilBertForMaskedLM",
|
|
"TFDistilBertForMultipleChoice",
|
|
"TFDistilBertForQuestionAnswering",
|
|
"TFDistilBertForSequenceClassification",
|
|
"TFDistilBertForTokenClassification",
|
|
"TFDistilBertMainLayer",
|
|
"TFDistilBertModel",
|
|
"TFDistilBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.dpr"].extend(
|
|
[
|
|
"TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFDPRContextEncoder",
|
|
"TFDPRPretrainedContextEncoder",
|
|
"TFDPRPretrainedQuestionEncoder",
|
|
"TFDPRPretrainedReader",
|
|
"TFDPRQuestionEncoder",
|
|
"TFDPRReader",
|
|
]
|
|
)
|
|
_import_structure["models.electra"].extend(
|
|
[
|
|
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFElectraForMaskedLM",
|
|
"TFElectraForMultipleChoice",
|
|
"TFElectraForPreTraining",
|
|
"TFElectraForQuestionAnswering",
|
|
"TFElectraForSequenceClassification",
|
|
"TFElectraForTokenClassification",
|
|
"TFElectraModel",
|
|
"TFElectraPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel")
|
|
_import_structure["models.esm"].extend(
|
|
[
|
|
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFEsmForMaskedLM",
|
|
"TFEsmForSequenceClassification",
|
|
"TFEsmForTokenClassification",
|
|
"TFEsmModel",
|
|
"TFEsmPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.flaubert"].extend(
|
|
[
|
|
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFFlaubertForMultipleChoice",
|
|
"TFFlaubertForQuestionAnsweringSimple",
|
|
"TFFlaubertForSequenceClassification",
|
|
"TFFlaubertForTokenClassification",
|
|
"TFFlaubertModel",
|
|
"TFFlaubertPreTrainedModel",
|
|
"TFFlaubertWithLMHeadModel",
|
|
]
|
|
)
|
|
_import_structure["models.funnel"].extend(
|
|
[
|
|
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFFunnelBaseModel",
|
|
"TFFunnelForMaskedLM",
|
|
"TFFunnelForMultipleChoice",
|
|
"TFFunnelForPreTraining",
|
|
"TFFunnelForQuestionAnswering",
|
|
"TFFunnelForSequenceClassification",
|
|
"TFFunnelForTokenClassification",
|
|
"TFFunnelModel",
|
|
"TFFunnelPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.gpt2"].extend(
|
|
[
|
|
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFGPT2DoubleHeadsModel",
|
|
"TFGPT2ForSequenceClassification",
|
|
"TFGPT2LMHeadModel",
|
|
"TFGPT2MainLayer",
|
|
"TFGPT2Model",
|
|
"TFGPT2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.gptj"].extend(
|
|
[
|
|
"TFGPTJForCausalLM",
|
|
"TFGPTJForQuestionAnswering",
|
|
"TFGPTJForSequenceClassification",
|
|
"TFGPTJModel",
|
|
"TFGPTJPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.groupvit"].extend(
|
|
[
|
|
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFGroupViTModel",
|
|
"TFGroupViTPreTrainedModel",
|
|
"TFGroupViTTextModel",
|
|
"TFGroupViTVisionModel",
|
|
]
|
|
)
|
|
_import_structure["models.hubert"].extend(
|
|
[
|
|
"TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFHubertForCTC",
|
|
"TFHubertModel",
|
|
"TFHubertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.layoutlm"].extend(
|
|
[
|
|
"TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFLayoutLMForMaskedLM",
|
|
"TFLayoutLMForQuestionAnswering",
|
|
"TFLayoutLMForSequenceClassification",
|
|
"TFLayoutLMForTokenClassification",
|
|
"TFLayoutLMMainLayer",
|
|
"TFLayoutLMModel",
|
|
"TFLayoutLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.layoutlmv3"].extend(
|
|
[
|
|
"TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFLayoutLMv3ForQuestionAnswering",
|
|
"TFLayoutLMv3ForSequenceClassification",
|
|
"TFLayoutLMv3ForTokenClassification",
|
|
"TFLayoutLMv3Model",
|
|
"TFLayoutLMv3PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"])
|
|
_import_structure["models.longformer"].extend(
|
|
[
|
|
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFLongformerForMaskedLM",
|
|
"TFLongformerForMultipleChoice",
|
|
"TFLongformerForQuestionAnswering",
|
|
"TFLongformerForSequenceClassification",
|
|
"TFLongformerForTokenClassification",
|
|
"TFLongformerModel",
|
|
"TFLongformerPreTrainedModel",
|
|
"TFLongformerSelfAttention",
|
|
]
|
|
)
|
|
_import_structure["models.lxmert"].extend(
|
|
[
|
|
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFLxmertForPreTraining",
|
|
"TFLxmertMainLayer",
|
|
"TFLxmertModel",
|
|
"TFLxmertPreTrainedModel",
|
|
"TFLxmertVisualFeatureEncoder",
|
|
]
|
|
)
|
|
_import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"])
|
|
_import_structure["models.mbart"].extend(
|
|
["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"]
|
|
)
|
|
_import_structure["models.mobilebert"].extend(
|
|
[
|
|
"TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFMobileBertForMaskedLM",
|
|
"TFMobileBertForMultipleChoice",
|
|
"TFMobileBertForNextSentencePrediction",
|
|
"TFMobileBertForPreTraining",
|
|
"TFMobileBertForQuestionAnswering",
|
|
"TFMobileBertForSequenceClassification",
|
|
"TFMobileBertForTokenClassification",
|
|
"TFMobileBertMainLayer",
|
|
"TFMobileBertModel",
|
|
"TFMobileBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mobilevit"].extend(
|
|
[
|
|
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFMobileViTForImageClassification",
|
|
"TFMobileViTForSemanticSegmentation",
|
|
"TFMobileViTModel",
|
|
"TFMobileViTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mpnet"].extend(
|
|
[
|
|
"TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFMPNetForMaskedLM",
|
|
"TFMPNetForMultipleChoice",
|
|
"TFMPNetForQuestionAnswering",
|
|
"TFMPNetForSequenceClassification",
|
|
"TFMPNetForTokenClassification",
|
|
"TFMPNetMainLayer",
|
|
"TFMPNetModel",
|
|
"TFMPNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"])
|
|
_import_structure["models.openai"].extend(
|
|
[
|
|
"TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFOpenAIGPTDoubleHeadsModel",
|
|
"TFOpenAIGPTForSequenceClassification",
|
|
"TFOpenAIGPTLMHeadModel",
|
|
"TFOpenAIGPTMainLayer",
|
|
"TFOpenAIGPTModel",
|
|
"TFOpenAIGPTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.opt"].extend(
|
|
[
|
|
"TFOPTForCausalLM",
|
|
"TFOPTModel",
|
|
"TFOPTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.pegasus"].extend(
|
|
["TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel"]
|
|
)
|
|
_import_structure["models.rag"].extend(
|
|
[
|
|
"TFRagModel",
|
|
"TFRagPreTrainedModel",
|
|
"TFRagSequenceForGeneration",
|
|
"TFRagTokenForGeneration",
|
|
]
|
|
)
|
|
_import_structure["models.regnet"].extend(
|
|
[
|
|
"TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFRegNetForImageClassification",
|
|
"TFRegNetModel",
|
|
"TFRegNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.rembert"].extend(
|
|
[
|
|
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFRemBertForCausalLM",
|
|
"TFRemBertForMaskedLM",
|
|
"TFRemBertForMultipleChoice",
|
|
"TFRemBertForQuestionAnswering",
|
|
"TFRemBertForSequenceClassification",
|
|
"TFRemBertForTokenClassification",
|
|
"TFRemBertLayer",
|
|
"TFRemBertModel",
|
|
"TFRemBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.resnet"].extend(
|
|
[
|
|
"TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFResNetForImageClassification",
|
|
"TFResNetModel",
|
|
"TFResNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.roberta"].extend(
|
|
[
|
|
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFRobertaForCausalLM",
|
|
"TFRobertaForMaskedLM",
|
|
"TFRobertaForMultipleChoice",
|
|
"TFRobertaForQuestionAnswering",
|
|
"TFRobertaForSequenceClassification",
|
|
"TFRobertaForTokenClassification",
|
|
"TFRobertaMainLayer",
|
|
"TFRobertaModel",
|
|
"TFRobertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.roformer"].extend(
|
|
[
|
|
"TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFRoFormerForCausalLM",
|
|
"TFRoFormerForMaskedLM",
|
|
"TFRoFormerForMultipleChoice",
|
|
"TFRoFormerForQuestionAnswering",
|
|
"TFRoFormerForSequenceClassification",
|
|
"TFRoFormerForTokenClassification",
|
|
"TFRoFormerLayer",
|
|
"TFRoFormerModel",
|
|
"TFRoFormerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.segformer"].extend(
|
|
[
|
|
"TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFSegformerDecodeHead",
|
|
"TFSegformerForImageClassification",
|
|
"TFSegformerForSemanticSegmentation",
|
|
"TFSegformerModel",
|
|
"TFSegformerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.speech_to_text"].extend(
|
|
[
|
|
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFSpeech2TextForConditionalGeneration",
|
|
"TFSpeech2TextModel",
|
|
"TFSpeech2TextPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.swin"].extend(
|
|
[
|
|
"TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFSwinForImageClassification",
|
|
"TFSwinForMaskedImageModeling",
|
|
"TFSwinModel",
|
|
"TFSwinPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.t5"].extend(
|
|
[
|
|
"TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFT5EncoderModel",
|
|
"TFT5ForConditionalGeneration",
|
|
"TFT5Model",
|
|
"TFT5PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.tapas"].extend(
|
|
[
|
|
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFTapasForMaskedLM",
|
|
"TFTapasForQuestionAnswering",
|
|
"TFTapasForSequenceClassification",
|
|
"TFTapasModel",
|
|
"TFTapasPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.transfo_xl"].extend(
|
|
[
|
|
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFAdaptiveEmbedding",
|
|
"TFTransfoXLForSequenceClassification",
|
|
"TFTransfoXLLMHeadModel",
|
|
"TFTransfoXLMainLayer",
|
|
"TFTransfoXLModel",
|
|
"TFTransfoXLPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vision_encoder_decoder"].extend(["TFVisionEncoderDecoderModel"])
|
|
_import_structure["models.vit"].extend(
|
|
[
|
|
"TFViTForImageClassification",
|
|
"TFViTModel",
|
|
"TFViTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.vit_mae"].extend(
|
|
[
|
|
"TFViTMAEForPreTraining",
|
|
"TFViTMAEModel",
|
|
"TFViTMAEPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.wav2vec2"].extend(
|
|
[
|
|
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFWav2Vec2ForCTC",
|
|
"TFWav2Vec2Model",
|
|
"TFWav2Vec2PreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.whisper"].extend(
|
|
[
|
|
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFWhisperForConditionalGeneration",
|
|
"TFWhisperModel",
|
|
"TFWhisperPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xglm"].extend(
|
|
[
|
|
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFXGLMForCausalLM",
|
|
"TFXGLMModel",
|
|
"TFXGLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm"].extend(
|
|
[
|
|
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFXLMForMultipleChoice",
|
|
"TFXLMForQuestionAnsweringSimple",
|
|
"TFXLMForSequenceClassification",
|
|
"TFXLMForTokenClassification",
|
|
"TFXLMMainLayer",
|
|
"TFXLMModel",
|
|
"TFXLMPreTrainedModel",
|
|
"TFXLMWithLMHeadModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm_roberta"].extend(
|
|
[
|
|
"TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFXLMRobertaForMaskedLM",
|
|
"TFXLMRobertaForMultipleChoice",
|
|
"TFXLMRobertaForQuestionAnswering",
|
|
"TFXLMRobertaForSequenceClassification",
|
|
"TFXLMRobertaForTokenClassification",
|
|
"TFXLMRobertaModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlnet"].extend(
|
|
[
|
|
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
|
"TFXLNetForMultipleChoice",
|
|
"TFXLNetForQuestionAnsweringSimple",
|
|
"TFXLNetForSequenceClassification",
|
|
"TFXLNetForTokenClassification",
|
|
"TFXLNetLMHeadModel",
|
|
"TFXLNetMainLayer",
|
|
"TFXLNetModel",
|
|
"TFXLNetPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"]
|
|
_import_structure["tf_utils"] = []
|
|
_import_structure["trainer_tf"] = ["TFTrainer"]
|
|
|
|
|
|
# FLAX-backed objects
|
|
try:
|
|
if not is_flax_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils import dummy_flax_objects
|
|
|
|
_import_structure["utils.dummy_flax_objects"] = [
|
|
name for name in dir(dummy_flax_objects) if not name.startswith("_")
|
|
]
|
|
else:
|
|
_import_structure["generation"].extend(
|
|
[
|
|
"FlaxForcedBOSTokenLogitsProcessor",
|
|
"FlaxForcedEOSTokenLogitsProcessor",
|
|
"FlaxGenerationMixin",
|
|
"FlaxLogitsProcessor",
|
|
"FlaxLogitsProcessorList",
|
|
"FlaxLogitsWarper",
|
|
"FlaxMinLengthLogitsProcessor",
|
|
"FlaxTemperatureLogitsWarper",
|
|
"FlaxTopKLogitsWarper",
|
|
"FlaxTopPLogitsWarper",
|
|
]
|
|
)
|
|
_import_structure["generation_flax_utils"] = []
|
|
_import_structure["modeling_flax_outputs"] = []
|
|
_import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"]
|
|
_import_structure["models.albert"].extend(
|
|
[
|
|
"FlaxAlbertForMaskedLM",
|
|
"FlaxAlbertForMultipleChoice",
|
|
"FlaxAlbertForPreTraining",
|
|
"FlaxAlbertForQuestionAnswering",
|
|
"FlaxAlbertForSequenceClassification",
|
|
"FlaxAlbertForTokenClassification",
|
|
"FlaxAlbertModel",
|
|
"FlaxAlbertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.auto"].extend(
|
|
[
|
|
"FLAX_MODEL_FOR_CAUSAL_LM_MAPPING",
|
|
"FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
|
|
"FLAX_MODEL_FOR_MASKED_LM_MAPPING",
|
|
"FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
|
|
"FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
|
|
"FLAX_MODEL_FOR_PRETRAINING_MAPPING",
|
|
"FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
|
|
"FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
|
|
"FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
|
|
"FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
|
|
"FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING",
|
|
"FLAX_MODEL_MAPPING",
|
|
"FlaxAutoModel",
|
|
"FlaxAutoModelForCausalLM",
|
|
"FlaxAutoModelForImageClassification",
|
|
"FlaxAutoModelForMaskedLM",
|
|
"FlaxAutoModelForMultipleChoice",
|
|
"FlaxAutoModelForNextSentencePrediction",
|
|
"FlaxAutoModelForPreTraining",
|
|
"FlaxAutoModelForQuestionAnswering",
|
|
"FlaxAutoModelForSeq2SeqLM",
|
|
"FlaxAutoModelForSequenceClassification",
|
|
"FlaxAutoModelForTokenClassification",
|
|
"FlaxAutoModelForVision2Seq",
|
|
]
|
|
)
|
|
|
|
# Flax models structure
|
|
|
|
_import_structure["models.bart"].extend(
|
|
[
|
|
"FlaxBartDecoderPreTrainedModel",
|
|
"FlaxBartForCausalLM",
|
|
"FlaxBartForConditionalGeneration",
|
|
"FlaxBartForQuestionAnswering",
|
|
"FlaxBartForSequenceClassification",
|
|
"FlaxBartModel",
|
|
"FlaxBartPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.beit"].extend(
|
|
[
|
|
"FlaxBeitForImageClassification",
|
|
"FlaxBeitForMaskedImageModeling",
|
|
"FlaxBeitModel",
|
|
"FlaxBeitPreTrainedModel",
|
|
]
|
|
)
|
|
|
|
_import_structure["models.bert"].extend(
|
|
[
|
|
"FlaxBertForCausalLM",
|
|
"FlaxBertForMaskedLM",
|
|
"FlaxBertForMultipleChoice",
|
|
"FlaxBertForNextSentencePrediction",
|
|
"FlaxBertForPreTraining",
|
|
"FlaxBertForQuestionAnswering",
|
|
"FlaxBertForSequenceClassification",
|
|
"FlaxBertForTokenClassification",
|
|
"FlaxBertModel",
|
|
"FlaxBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.big_bird"].extend(
|
|
[
|
|
"FlaxBigBirdForCausalLM",
|
|
"FlaxBigBirdForMaskedLM",
|
|
"FlaxBigBirdForMultipleChoice",
|
|
"FlaxBigBirdForPreTraining",
|
|
"FlaxBigBirdForQuestionAnswering",
|
|
"FlaxBigBirdForSequenceClassification",
|
|
"FlaxBigBirdForTokenClassification",
|
|
"FlaxBigBirdModel",
|
|
"FlaxBigBirdPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.blenderbot"].extend(
|
|
["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"]
|
|
)
|
|
_import_structure["models.blenderbot_small"].extend(
|
|
[
|
|
"FlaxBlenderbotSmallForConditionalGeneration",
|
|
"FlaxBlenderbotSmallModel",
|
|
"FlaxBlenderbotSmallPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.clip"].extend(
|
|
[
|
|
"FlaxCLIPModel",
|
|
"FlaxCLIPPreTrainedModel",
|
|
"FlaxCLIPTextModel",
|
|
"FlaxCLIPTextPreTrainedModel",
|
|
"FlaxCLIPVisionModel",
|
|
"FlaxCLIPVisionPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.distilbert"].extend(
|
|
[
|
|
"FlaxDistilBertForMaskedLM",
|
|
"FlaxDistilBertForMultipleChoice",
|
|
"FlaxDistilBertForQuestionAnswering",
|
|
"FlaxDistilBertForSequenceClassification",
|
|
"FlaxDistilBertForTokenClassification",
|
|
"FlaxDistilBertModel",
|
|
"FlaxDistilBertPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.electra"].extend(
|
|
[
|
|
"FlaxElectraForCausalLM",
|
|
"FlaxElectraForMaskedLM",
|
|
"FlaxElectraForMultipleChoice",
|
|
"FlaxElectraForPreTraining",
|
|
"FlaxElectraForQuestionAnswering",
|
|
"FlaxElectraForSequenceClassification",
|
|
"FlaxElectraForTokenClassification",
|
|
"FlaxElectraModel",
|
|
"FlaxElectraPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.encoder_decoder"].append("FlaxEncoderDecoderModel")
|
|
_import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"])
|
|
_import_structure["models.gpt_neo"].extend(
|
|
["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"]
|
|
)
|
|
_import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"])
|
|
_import_structure["models.longt5"].extend(
|
|
["FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel"]
|
|
)
|
|
_import_structure["models.marian"].extend(
|
|
[
|
|
"FlaxMarianModel",
|
|
"FlaxMarianMTModel",
|
|
"FlaxMarianPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mbart"].extend(
|
|
[
|
|
"FlaxMBartForConditionalGeneration",
|
|
"FlaxMBartForQuestionAnswering",
|
|
"FlaxMBartForSequenceClassification",
|
|
"FlaxMBartModel",
|
|
"FlaxMBartPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.mt5"].extend(["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"])
|
|
_import_structure["models.opt"].extend(
|
|
[
|
|
"FlaxOPTForCausalLM",
|
|
"FlaxOPTModel",
|
|
"FlaxOPTPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.pegasus"].extend(
|
|
[
|
|
"FlaxPegasusForConditionalGeneration",
|
|
"FlaxPegasusModel",
|
|
"FlaxPegasusPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.roberta"].extend(
|
|
[
|
|
"FlaxRobertaForCausalLM",
|
|
"FlaxRobertaForMaskedLM",
|
|
"FlaxRobertaForMultipleChoice",
|
|
"FlaxRobertaForQuestionAnswering",
|
|
"FlaxRobertaForSequenceClassification",
|
|
"FlaxRobertaForTokenClassification",
|
|
"FlaxRobertaModel",
|
|
"FlaxRobertaPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.roformer"].extend(
|
|
[
|
|
"FlaxRoFormerForMaskedLM",
|
|
"FlaxRoFormerForMultipleChoice",
|
|
"FlaxRoFormerForQuestionAnswering",
|
|
"FlaxRoFormerForSequenceClassification",
|
|
"FlaxRoFormerForTokenClassification",
|
|
"FlaxRoFormerModel",
|
|
"FlaxRoFormerPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.speech_encoder_decoder"].append("FlaxSpeechEncoderDecoderModel")
|
|
_import_structure["models.t5"].extend(
|
|
["FlaxT5EncoderModel", "FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel"]
|
|
)
|
|
_import_structure["models.vision_encoder_decoder"].append("FlaxVisionEncoderDecoderModel")
|
|
_import_structure["models.vision_text_dual_encoder"].extend(["FlaxVisionTextDualEncoderModel"])
|
|
_import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"])
|
|
_import_structure["models.wav2vec2"].extend(
|
|
["FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel"]
|
|
)
|
|
_import_structure["models.xglm"].extend(
|
|
[
|
|
"FlaxXGLMForCausalLM",
|
|
"FlaxXGLMModel",
|
|
"FlaxXGLMPreTrainedModel",
|
|
]
|
|
)
|
|
_import_structure["models.xlm_roberta"].extend(
|
|
[
|
|
"FlaxXLMRobertaForMaskedLM",
|
|
"FlaxXLMRobertaForMultipleChoice",
|
|
"FlaxXLMRobertaForQuestionAnswering",
|
|
"FlaxXLMRobertaForSequenceClassification",
|
|
"FlaxXLMRobertaForTokenClassification",
|
|
"FlaxXLMRobertaModel",
|
|
]
|
|
)
|
|
|
|
|
|
# Direct imports for type-checking
|
|
if TYPE_CHECKING:
|
|
# Configuration
|
|
from .configuration_utils import PretrainedConfig
|
|
|
|
# Data
|
|
from .data import (
|
|
DataProcessor,
|
|
InputExample,
|
|
InputFeatures,
|
|
SingleSentenceClassificationProcessor,
|
|
SquadExample,
|
|
SquadFeatures,
|
|
SquadV1Processor,
|
|
SquadV2Processor,
|
|
glue_compute_metrics,
|
|
glue_convert_examples_to_features,
|
|
glue_output_modes,
|
|
glue_processors,
|
|
glue_tasks_num_labels,
|
|
squad_convert_examples_to_features,
|
|
xnli_compute_metrics,
|
|
xnli_output_modes,
|
|
xnli_processors,
|
|
xnli_tasks_num_labels,
|
|
)
|
|
from .data.data_collator import (
|
|
DataCollator,
|
|
DataCollatorForLanguageModeling,
|
|
DataCollatorForPermutationLanguageModeling,
|
|
DataCollatorForSeq2Seq,
|
|
DataCollatorForSOP,
|
|
DataCollatorForTokenClassification,
|
|
DataCollatorForWholeWordMask,
|
|
DataCollatorWithPadding,
|
|
DefaultDataCollator,
|
|
default_data_collator,
|
|
)
|
|
from .feature_extraction_sequence_utils import SequenceFeatureExtractor
|
|
|
|
# Feature Extractor
|
|
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
|
|
|
# Generation
|
|
from .generation import GenerationConfig
|
|
from .hf_argparser import HfArgumentParser
|
|
|
|
# Integrations
|
|
from .integrations import (
|
|
is_clearml_available,
|
|
is_comet_available,
|
|
is_neptune_available,
|
|
is_optuna_available,
|
|
is_ray_available,
|
|
is_ray_tune_available,
|
|
is_sigopt_available,
|
|
is_tensorboard_available,
|
|
is_wandb_available,
|
|
)
|
|
|
|
# Model Cards
|
|
from .modelcard import ModelCard
|
|
|
|
# TF 2.0 <=> PyTorch conversion utilities
|
|
from .modeling_tf_pytorch_utils import (
|
|
convert_tf_weight_name_to_pt_weight_name,
|
|
load_pytorch_checkpoint_in_tf2_model,
|
|
load_pytorch_model_in_tf2_model,
|
|
load_pytorch_weights_in_tf2_model,
|
|
load_tf2_checkpoint_in_pytorch_model,
|
|
load_tf2_model_in_pytorch_model,
|
|
load_tf2_weights_in_pytorch_model,
|
|
)
|
|
from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
|
|
from .models.audio_spectrogram_transformer import (
|
|
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
ASTConfig,
|
|
)
|
|
from .models.auto import (
|
|
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
CONFIG_MAPPING,
|
|
FEATURE_EXTRACTOR_MAPPING,
|
|
IMAGE_PROCESSOR_MAPPING,
|
|
MODEL_NAMES_MAPPING,
|
|
PROCESSOR_MAPPING,
|
|
TOKENIZER_MAPPING,
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoImageProcessor,
|
|
AutoProcessor,
|
|
AutoTokenizer,
|
|
)
|
|
from .models.bart import BartConfig, BartTokenizer
|
|
from .models.beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig
|
|
from .models.bert import (
|
|
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
BasicTokenizer,
|
|
BertConfig,
|
|
BertTokenizer,
|
|
WordpieceTokenizer,
|
|
)
|
|
from .models.bert_generation import BertGenerationConfig
|
|
from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
|
|
from .models.bertweet import BertweetTokenizer
|
|
from .models.big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig
|
|
from .models.bigbird_pegasus import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig
|
|
from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer
|
|
from .models.blenderbot_small import (
|
|
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
BlenderbotSmallConfig,
|
|
BlenderbotSmallTokenizer,
|
|
)
|
|
from .models.bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig
|
|
from .models.byt5 import ByT5Tokenizer
|
|
from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
|
|
from .models.canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig, CanineTokenizer
|
|
from .models.clip import (
|
|
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
CLIPConfig,
|
|
CLIPProcessor,
|
|
CLIPTextConfig,
|
|
CLIPTokenizer,
|
|
CLIPVisionConfig,
|
|
)
|
|
from .models.clipseg import (
|
|
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
CLIPSegConfig,
|
|
CLIPSegProcessor,
|
|
CLIPSegTextConfig,
|
|
CLIPSegVisionConfig,
|
|
)
|
|
from .models.codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenTokenizer
|
|
from .models.conditional_detr import CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig
|
|
from .models.convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertTokenizer
|
|
from .models.convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig
|
|
from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer
|
|
from .models.cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig
|
|
from .models.data2vec import (
|
|
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
Data2VecAudioConfig,
|
|
Data2VecTextConfig,
|
|
Data2VecVisionConfig,
|
|
)
|
|
from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer
|
|
from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
|
|
from .models.decision_transformer import (
|
|
DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
DecisionTransformerConfig,
|
|
)
|
|
from .models.deformable_detr import DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DeformableDetrConfig
|
|
from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
|
|
from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
|
|
from .models.dinat import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP, DinatConfig
|
|
from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer
|
|
from .models.donut import DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, DonutProcessor, DonutSwinConfig
|
|
from .models.dpr import (
|
|
DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
DPRConfig,
|
|
DPRContextEncoderTokenizer,
|
|
DPRQuestionEncoderTokenizer,
|
|
DPRReaderOutput,
|
|
DPRReaderTokenizer,
|
|
)
|
|
from .models.dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
|
|
from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer
|
|
from .models.encoder_decoder import EncoderDecoderConfig
|
|
from .models.ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig
|
|
from .models.esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig, EsmTokenizer
|
|
from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer
|
|
from .models.flava import (
|
|
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
FlavaConfig,
|
|
FlavaImageCodebookConfig,
|
|
FlavaImageConfig,
|
|
FlavaMultimodalConfig,
|
|
FlavaTextConfig,
|
|
)
|
|
from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
|
|
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
|
|
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
|
|
from .models.glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
|
|
from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer
|
|
from .models.gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
|
|
from .models.gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
|
|
from .models.gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
|
|
from .models.gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig
|
|
from .models.groupvit import (
|
|
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
GroupViTConfig,
|
|
GroupViTTextConfig,
|
|
GroupViTVisionConfig,
|
|
)
|
|
from .models.herbert import HerbertTokenizer
|
|
from .models.hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig
|
|
from .models.ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig
|
|
from .models.imagegpt import IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ImageGPTConfig
|
|
from .models.jukebox import (
|
|
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
JukeboxConfig,
|
|
JukeboxPriorConfig,
|
|
JukeboxTokenizer,
|
|
JukeboxVQVAEConfig,
|
|
)
|
|
from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer
|
|
from .models.layoutlmv2 import (
|
|
LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
LayoutLMv2Config,
|
|
LayoutLMv2FeatureExtractor,
|
|
LayoutLMv2ImageProcessor,
|
|
LayoutLMv2Processor,
|
|
LayoutLMv2Tokenizer,
|
|
)
|
|
from .models.layoutlmv3 import (
|
|
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
LayoutLMv3Config,
|
|
LayoutLMv3FeatureExtractor,
|
|
LayoutLMv3ImageProcessor,
|
|
LayoutLMv3Processor,
|
|
LayoutLMv3Tokenizer,
|
|
)
|
|
from .models.layoutxlm import LayoutXLMProcessor
|
|
from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer
|
|
from .models.levit import LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, LevitConfig
|
|
from .models.lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
|
|
from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer
|
|
from .models.longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config
|
|
from .models.luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig, LukeTokenizer
|
|
from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer
|
|
from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
|
|
from .models.marian import MarianConfig
|
|
from .models.markuplm import (
|
|
MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
MarkupLMConfig,
|
|
MarkupLMFeatureExtractor,
|
|
MarkupLMProcessor,
|
|
MarkupLMTokenizer,
|
|
)
|
|
from .models.maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig, MaskFormerSwinConfig
|
|
from .models.mbart import MBartConfig
|
|
from .models.mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig, MCTCTProcessor
|
|
from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
|
|
from .models.mmbt import MMBTConfig
|
|
from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer
|
|
from .models.mobilenet_v1 import MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetV1Config
|
|
from .models.mobilenet_v2 import MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetV2Config
|
|
from .models.mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig
|
|
from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer
|
|
from .models.mt5 import MT5Config
|
|
from .models.mvp import MvpConfig, MvpTokenizer
|
|
from .models.nat import NAT_PRETRAINED_CONFIG_ARCHIVE_MAP, NatConfig
|
|
from .models.nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
|
|
from .models.nystromformer import NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, NystromformerConfig
|
|
from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer
|
|
from .models.opt import OPTConfig
|
|
from .models.owlvit import (
|
|
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
OwlViTConfig,
|
|
OwlViTProcessor,
|
|
OwlViTTextConfig,
|
|
OwlViTVisionConfig,
|
|
)
|
|
from .models.pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig, PegasusTokenizer
|
|
from .models.pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
|
|
from .models.perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverTokenizer
|
|
from .models.phobert import PhobertTokenizer
|
|
from .models.plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
|
|
from .models.poolformer import POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig
|
|
from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer
|
|
from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig
|
|
from .models.rag import RagConfig, RagRetriever, RagTokenizer
|
|
from .models.realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig, RealmTokenizer
|
|
from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
|
|
from .models.regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig
|
|
from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig
|
|
from .models.resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig
|
|
from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer
|
|
from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer
|
|
from .models.roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig, RoCBertTokenizer
|
|
from .models.roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerTokenizer
|
|
from .models.segformer import SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SegformerConfig
|
|
from .models.sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
|
|
from .models.sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig
|
|
from .models.speech_encoder_decoder import SpeechEncoderDecoderConfig
|
|
from .models.speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig
|
|
from .models.speech_to_text_2 import (
|
|
SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
Speech2Text2Config,
|
|
Speech2Text2Processor,
|
|
Speech2Text2Tokenizer,
|
|
)
|
|
from .models.splinter import SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP, SplinterConfig, SplinterTokenizer
|
|
from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer
|
|
from .models.swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig
|
|
from .models.swinv2 import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, Swinv2Config
|
|
from .models.switch_transformers import SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP, SwitchTransformersConfig
|
|
from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
|
|
from .models.table_transformer import TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig
|
|
from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer
|
|
from .models.tapex import TapexTokenizer
|
|
from .models.time_series_transformer import (
|
|
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
TimeSeriesTransformerConfig,
|
|
)
|
|
from .models.trajectory_transformer import (
|
|
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
TrajectoryTransformerConfig,
|
|
)
|
|
from .models.transfo_xl import (
|
|
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
TransfoXLConfig,
|
|
TransfoXLCorpus,
|
|
TransfoXLTokenizer,
|
|
)
|
|
from .models.trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig, TrOCRProcessor
|
|
from .models.unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
|
|
from .models.unispeech_sat import UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechSatConfig
|
|
from .models.van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
|
|
from .models.videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig
|
|
from .models.vilt import (
|
|
VILT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
ViltConfig,
|
|
ViltFeatureExtractor,
|
|
ViltImageProcessor,
|
|
ViltProcessor,
|
|
)
|
|
from .models.vision_encoder_decoder import VisionEncoderDecoderConfig
|
|
from .models.vision_text_dual_encoder import VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor
|
|
from .models.visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig
|
|
from .models.vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig
|
|
from .models.vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
|
|
from .models.vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
|
|
from .models.wav2vec2 import (
|
|
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
Wav2Vec2Config,
|
|
Wav2Vec2CTCTokenizer,
|
|
Wav2Vec2FeatureExtractor,
|
|
Wav2Vec2Processor,
|
|
Wav2Vec2Tokenizer,
|
|
)
|
|
from .models.wav2vec2_conformer import WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2ConformerConfig
|
|
from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer
|
|
from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM
|
|
from .models.wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
|
|
from .models.whisper import (
|
|
WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
WhisperConfig,
|
|
WhisperFeatureExtractor,
|
|
WhisperProcessor,
|
|
WhisperTokenizer,
|
|
)
|
|
from .models.x_clip import (
|
|
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
XCLIPConfig,
|
|
XCLIPProcessor,
|
|
XCLIPTextConfig,
|
|
XCLIPVisionConfig,
|
|
)
|
|
from .models.xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
|
|
from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer
|
|
from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig
|
|
from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig
|
|
from .models.xlm_roberta_xl import XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig
|
|
from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
|
|
from .models.yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig
|
|
from .models.yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig
|
|
|
|
# Pipelines
|
|
from .pipelines import (
|
|
AudioClassificationPipeline,
|
|
AutomaticSpeechRecognitionPipeline,
|
|
Conversation,
|
|
ConversationalPipeline,
|
|
CsvPipelineDataFormat,
|
|
DepthEstimationPipeline,
|
|
DocumentQuestionAnsweringPipeline,
|
|
FeatureExtractionPipeline,
|
|
FillMaskPipeline,
|
|
ImageClassificationPipeline,
|
|
ImageSegmentationPipeline,
|
|
ImageToTextPipeline,
|
|
JsonPipelineDataFormat,
|
|
NerPipeline,
|
|
ObjectDetectionPipeline,
|
|
PipedPipelineDataFormat,
|
|
Pipeline,
|
|
PipelineDataFormat,
|
|
QuestionAnsweringPipeline,
|
|
SummarizationPipeline,
|
|
TableQuestionAnsweringPipeline,
|
|
Text2TextGenerationPipeline,
|
|
TextClassificationPipeline,
|
|
TextGenerationPipeline,
|
|
TokenClassificationPipeline,
|
|
TranslationPipeline,
|
|
VisualQuestionAnsweringPipeline,
|
|
ZeroShotClassificationPipeline,
|
|
ZeroShotImageClassificationPipeline,
|
|
ZeroShotObjectDetectionPipeline,
|
|
pipeline,
|
|
)
|
|
from .processing_utils import ProcessorMixin
|
|
|
|
# Tokenization
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
from .tokenization_utils_base import (
|
|
AddedToken,
|
|
BatchEncoding,
|
|
CharSpan,
|
|
PreTrainedTokenizerBase,
|
|
SpecialTokensMixin,
|
|
TokenSpan,
|
|
)
|
|
|
|
# Trainer
|
|
from .trainer_callback import (
|
|
DefaultFlowCallback,
|
|
EarlyStoppingCallback,
|
|
PrinterCallback,
|
|
ProgressCallback,
|
|
TrainerCallback,
|
|
TrainerControl,
|
|
TrainerState,
|
|
)
|
|
from .trainer_utils import EvalPrediction, IntervalStrategy, SchedulerType, enable_full_determinism, set_seed
|
|
from .training_args import TrainingArguments
|
|
from .training_args_seq2seq import Seq2SeqTrainingArguments
|
|
from .training_args_tf import TFTrainingArguments
|
|
|
|
# Files and general utilities
|
|
from .utils import (
|
|
CONFIG_NAME,
|
|
MODEL_CARD_NAME,
|
|
PYTORCH_PRETRAINED_BERT_CACHE,
|
|
PYTORCH_TRANSFORMERS_CACHE,
|
|
SPIECE_UNDERLINE,
|
|
TF2_WEIGHTS_NAME,
|
|
TF_WEIGHTS_NAME,
|
|
TRANSFORMERS_CACHE,
|
|
WEIGHTS_NAME,
|
|
TensorType,
|
|
add_end_docstrings,
|
|
add_start_docstrings,
|
|
is_apex_available,
|
|
is_datasets_available,
|
|
is_faiss_available,
|
|
is_flax_available,
|
|
is_phonemizer_available,
|
|
is_psutil_available,
|
|
is_py3nvml_available,
|
|
is_pyctcdecode_available,
|
|
is_safetensors_available,
|
|
is_scipy_available,
|
|
is_sentencepiece_available,
|
|
is_sklearn_available,
|
|
is_speech_available,
|
|
is_tensorflow_text_available,
|
|
is_tf_available,
|
|
is_timm_available,
|
|
is_tokenizers_available,
|
|
is_torch_available,
|
|
is_torch_tpu_available,
|
|
is_vision_available,
|
|
logging,
|
|
)
|
|
|
|
try:
|
|
if not is_sentencepiece_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_sentencepiece_objects import *
|
|
else:
|
|
from .models.albert import AlbertTokenizer
|
|
from .models.barthez import BarthezTokenizer
|
|
from .models.bartpho import BartphoTokenizer
|
|
from .models.bert_generation import BertGenerationTokenizer
|
|
from .models.big_bird import BigBirdTokenizer
|
|
from .models.camembert import CamembertTokenizer
|
|
from .models.cpm import CpmTokenizer
|
|
from .models.deberta_v2 import DebertaV2Tokenizer
|
|
from .models.fnet import FNetTokenizer
|
|
from .models.layoutxlm import LayoutXLMTokenizer
|
|
from .models.m2m_100 import M2M100Tokenizer
|
|
from .models.marian import MarianTokenizer
|
|
from .models.mbart import MBart50Tokenizer, MBartTokenizer
|
|
from .models.mluke import MLukeTokenizer
|
|
from .models.mt5 import MT5Tokenizer
|
|
from .models.nllb import NllbTokenizer
|
|
from .models.pegasus import PegasusTokenizer
|
|
from .models.plbart import PLBartTokenizer
|
|
from .models.reformer import ReformerTokenizer
|
|
from .models.rembert import RemBertTokenizer
|
|
from .models.speech_to_text import Speech2TextTokenizer
|
|
from .models.t5 import T5Tokenizer
|
|
from .models.xglm import XGLMTokenizer
|
|
from .models.xlm_prophetnet import XLMProphetNetTokenizer
|
|
from .models.xlm_roberta import XLMRobertaTokenizer
|
|
from .models.xlnet import XLNetTokenizer
|
|
|
|
try:
|
|
if not is_tokenizers_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_tokenizers_objects import *
|
|
else:
|
|
# Fast tokenizers imports
|
|
from .models.albert import AlbertTokenizerFast
|
|
from .models.bart import BartTokenizerFast
|
|
from .models.barthez import BarthezTokenizerFast
|
|
from .models.bert import BertTokenizerFast
|
|
from .models.big_bird import BigBirdTokenizerFast
|
|
from .models.blenderbot import BlenderbotTokenizerFast
|
|
from .models.blenderbot_small import BlenderbotSmallTokenizerFast
|
|
from .models.bloom import BloomTokenizerFast
|
|
from .models.camembert import CamembertTokenizerFast
|
|
from .models.clip import CLIPTokenizerFast
|
|
from .models.codegen import CodeGenTokenizerFast
|
|
from .models.convbert import ConvBertTokenizerFast
|
|
from .models.cpm import CpmTokenizerFast
|
|
from .models.deberta import DebertaTokenizerFast
|
|
from .models.deberta_v2 import DebertaV2TokenizerFast
|
|
from .models.distilbert import DistilBertTokenizerFast
|
|
from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast
|
|
from .models.electra import ElectraTokenizerFast
|
|
from .models.fnet import FNetTokenizerFast
|
|
from .models.funnel import FunnelTokenizerFast
|
|
from .models.gpt2 import GPT2TokenizerFast
|
|
from .models.gpt_neox import GPTNeoXTokenizerFast
|
|
from .models.gpt_neox_japanese import GPTNeoXJapaneseTokenizer
|
|
from .models.herbert import HerbertTokenizerFast
|
|
from .models.layoutlm import LayoutLMTokenizerFast
|
|
from .models.layoutlmv2 import LayoutLMv2TokenizerFast
|
|
from .models.layoutlmv3 import LayoutLMv3TokenizerFast
|
|
from .models.layoutxlm import LayoutXLMTokenizerFast
|
|
from .models.led import LEDTokenizerFast
|
|
from .models.longformer import LongformerTokenizerFast
|
|
from .models.lxmert import LxmertTokenizerFast
|
|
from .models.markuplm import MarkupLMTokenizerFast
|
|
from .models.mbart import MBartTokenizerFast
|
|
from .models.mbart50 import MBart50TokenizerFast
|
|
from .models.mobilebert import MobileBertTokenizerFast
|
|
from .models.mpnet import MPNetTokenizerFast
|
|
from .models.mt5 import MT5TokenizerFast
|
|
from .models.mvp import MvpTokenizerFast
|
|
from .models.nllb import NllbTokenizerFast
|
|
from .models.openai import OpenAIGPTTokenizerFast
|
|
from .models.pegasus import PegasusTokenizerFast
|
|
from .models.realm import RealmTokenizerFast
|
|
from .models.reformer import ReformerTokenizerFast
|
|
from .models.rembert import RemBertTokenizerFast
|
|
from .models.retribert import RetriBertTokenizerFast
|
|
from .models.roberta import RobertaTokenizerFast
|
|
from .models.roformer import RoFormerTokenizerFast
|
|
from .models.splinter import SplinterTokenizerFast
|
|
from .models.squeezebert import SqueezeBertTokenizerFast
|
|
from .models.t5 import T5TokenizerFast
|
|
from .models.xglm import XGLMTokenizerFast
|
|
from .models.xlm_roberta import XLMRobertaTokenizerFast
|
|
from .models.xlnet import XLNetTokenizerFast
|
|
from .tokenization_utils_fast import PreTrainedTokenizerFast
|
|
|
|
try:
|
|
if not (is_sentencepiece_available() and is_tokenizers_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummies_sentencepiece_and_tokenizers_objects import *
|
|
else:
|
|
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer
|
|
|
|
try:
|
|
if not is_speech_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_speech_objects import *
|
|
else:
|
|
from .models.audio_spectrogram_transformer import ASTFeatureExtractor
|
|
from .models.mctct import MCTCTFeatureExtractor
|
|
from .models.speech_to_text import Speech2TextFeatureExtractor
|
|
|
|
try:
|
|
if not is_tensorflow_text_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_tensorflow_text_objects import *
|
|
else:
|
|
from .models.bert import TFBertTokenizer
|
|
|
|
try:
|
|
if not is_keras_nlp_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_keras_nlp_objects import *
|
|
else:
|
|
from .models.gpt2 import TFGPT2Tokenizer
|
|
|
|
try:
|
|
if not (is_speech_available() and is_sentencepiece_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_sentencepiece_and_speech_objects import *
|
|
else:
|
|
from .models.speech_to_text import Speech2TextProcessor
|
|
|
|
try:
|
|
if not is_vision_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_vision_objects import *
|
|
else:
|
|
from .image_processing_utils import ImageProcessingMixin
|
|
from .image_transforms import rescale, resize, to_pil_image
|
|
from .image_utils import ImageFeatureExtractionMixin
|
|
from .models.beit import BeitFeatureExtractor, BeitImageProcessor
|
|
from .models.clip import CLIPFeatureExtractor, CLIPImageProcessor
|
|
from .models.conditional_detr import ConditionalDetrFeatureExtractor
|
|
from .models.convnext import ConvNextFeatureExtractor, ConvNextImageProcessor
|
|
from .models.deformable_detr import DeformableDetrFeatureExtractor
|
|
from .models.deit import DeiTFeatureExtractor, DeiTImageProcessor
|
|
from .models.detr import DetrFeatureExtractor
|
|
from .models.donut import DonutFeatureExtractor, DonutImageProcessor
|
|
from .models.dpt import DPTFeatureExtractor, DPTImageProcessor
|
|
from .models.flava import FlavaFeatureExtractor, FlavaImageProcessor, FlavaProcessor
|
|
from .models.glpn import GLPNFeatureExtractor, GLPNImageProcessor
|
|
from .models.imagegpt import ImageGPTFeatureExtractor, ImageGPTImageProcessor
|
|
from .models.layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor
|
|
from .models.layoutlmv3 import LayoutLMv3FeatureExtractor, LayoutLMv3ImageProcessor
|
|
from .models.levit import LevitFeatureExtractor, LevitImageProcessor
|
|
from .models.maskformer import MaskFormerFeatureExtractor
|
|
from .models.mobilenet_v1 import MobileNetV1FeatureExtractor, MobileNetV1ImageProcessor
|
|
from .models.mobilenet_v2 import MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor
|
|
from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor
|
|
from .models.owlvit import OwlViTFeatureExtractor
|
|
from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor
|
|
from .models.poolformer import PoolFormerFeatureExtractor, PoolFormerImageProcessor
|
|
from .models.segformer import SegformerFeatureExtractor, SegformerImageProcessor
|
|
from .models.videomae import VideoMAEFeatureExtractor, VideoMAEImageProcessor
|
|
from .models.vilt import ViltFeatureExtractor, ViltImageProcessor, ViltProcessor
|
|
from .models.vit import ViTFeatureExtractor, ViTImageProcessor
|
|
from .models.yolos import YolosFeatureExtractor
|
|
|
|
# Modeling
|
|
try:
|
|
if not (is_timm_available() and is_vision_available()):
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_timm_and_vision_objects import *
|
|
else:
|
|
from .models.conditional_detr import (
|
|
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ConditionalDetrForObjectDetection,
|
|
ConditionalDetrForSegmentation,
|
|
ConditionalDetrModel,
|
|
ConditionalDetrPreTrainedModel,
|
|
)
|
|
from .models.deformable_detr import (
|
|
DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DeformableDetrForObjectDetection,
|
|
DeformableDetrModel,
|
|
DeformableDetrPreTrainedModel,
|
|
)
|
|
from .models.detr import (
|
|
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DetrForObjectDetection,
|
|
DetrForSegmentation,
|
|
DetrModel,
|
|
DetrPreTrainedModel,
|
|
)
|
|
from .models.table_transformer import (
|
|
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TableTransformerForObjectDetection,
|
|
TableTransformerModel,
|
|
TableTransformerPreTrainedModel,
|
|
)
|
|
|
|
try:
|
|
if not is_torch_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
from .utils.dummy_pt_objects import *
|
|
else:
|
|
# Benchmarks
|
|
from .benchmark.benchmark import PyTorchBenchmark
|
|
from .benchmark.benchmark_args import PyTorchBenchmarkArguments
|
|
from .data.datasets import (
|
|
GlueDataset,
|
|
GlueDataTrainingArguments,
|
|
LineByLineTextDataset,
|
|
LineByLineWithRefDataset,
|
|
LineByLineWithSOPTextDataset,
|
|
SquadDataset,
|
|
SquadDataTrainingArguments,
|
|
TextDataset,
|
|
TextDatasetForNextSentencePrediction,
|
|
)
|
|
from .generation import (
|
|
BeamScorer,
|
|
BeamSearchScorer,
|
|
ConstrainedBeamSearchScorer,
|
|
Constraint,
|
|
ConstraintListState,
|
|
DisjunctiveConstraint,
|
|
ForcedBOSTokenLogitsProcessor,
|
|
ForcedEOSTokenLogitsProcessor,
|
|
GenerationMixin,
|
|
HammingDiversityLogitsProcessor,
|
|
InfNanRemoveLogitsProcessor,
|
|
LogitsProcessor,
|
|
LogitsProcessorList,
|
|
LogitsWarper,
|
|
MaxLengthCriteria,
|
|
MaxTimeCriteria,
|
|
MinLengthLogitsProcessor,
|
|
NoBadWordsLogitsProcessor,
|
|
NoRepeatNGramLogitsProcessor,
|
|
PhrasalConstraint,
|
|
PrefixConstrainedLogitsProcessor,
|
|
RepetitionPenaltyLogitsProcessor,
|
|
StoppingCriteria,
|
|
StoppingCriteriaList,
|
|
TemperatureLogitsWarper,
|
|
TopKLogitsWarper,
|
|
TopPLogitsWarper,
|
|
TypicalLogitsWarper,
|
|
top_k_top_p_filtering,
|
|
)
|
|
from .modeling_utils import PreTrainedModel
|
|
|
|
# PyTorch model imports
|
|
from .models.albert import (
|
|
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
AlbertForMaskedLM,
|
|
AlbertForMultipleChoice,
|
|
AlbertForPreTraining,
|
|
AlbertForQuestionAnswering,
|
|
AlbertForSequenceClassification,
|
|
AlbertForTokenClassification,
|
|
AlbertModel,
|
|
AlbertPreTrainedModel,
|
|
load_tf_weights_in_albert,
|
|
)
|
|
from .models.audio_spectrogram_transformer import (
|
|
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ASTForAudioClassification,
|
|
ASTModel,
|
|
ASTPreTrainedModel,
|
|
)
|
|
from .models.auto import (
|
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_AUDIO_XVECTOR_MAPPING,
|
|
MODEL_FOR_BACKBONE_MAPPING,
|
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
|
|
MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_CTC_MAPPING,
|
|
MODEL_FOR_DEPTH_ESTIMATION_MAPPING,
|
|
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
|
|
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
|
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
|
MODEL_FOR_MASKED_LM_MAPPING,
|
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
|
|
MODEL_FOR_OBJECT_DETECTION_MAPPING,
|
|
MODEL_FOR_PRETRAINING_MAPPING,
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
|
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
|
|
MODEL_FOR_VISION_2_SEQ_MAPPING,
|
|
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING,
|
|
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING,
|
|
MODEL_MAPPING,
|
|
MODEL_WITH_LM_HEAD_MAPPING,
|
|
AutoBackbone,
|
|
AutoModel,
|
|
AutoModelForAudioClassification,
|
|
AutoModelForAudioFrameClassification,
|
|
AutoModelForAudioXVector,
|
|
AutoModelForCausalLM,
|
|
AutoModelForCTC,
|
|
AutoModelForDepthEstimation,
|
|
AutoModelForDocumentQuestionAnswering,
|
|
AutoModelForImageClassification,
|
|
AutoModelForImageSegmentation,
|
|
AutoModelForInstanceSegmentation,
|
|
AutoModelForMaskedImageModeling,
|
|
AutoModelForMaskedLM,
|
|
AutoModelForMultipleChoice,
|
|
AutoModelForNextSentencePrediction,
|
|
AutoModelForObjectDetection,
|
|
AutoModelForPreTraining,
|
|
AutoModelForQuestionAnswering,
|
|
AutoModelForSemanticSegmentation,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoModelForSpeechSeq2Seq,
|
|
AutoModelForTableQuestionAnswering,
|
|
AutoModelForTokenClassification,
|
|
AutoModelForVideoClassification,
|
|
AutoModelForVision2Seq,
|
|
AutoModelForVisualQuestionAnswering,
|
|
AutoModelForZeroShotObjectDetection,
|
|
AutoModelWithLMHead,
|
|
)
|
|
from .models.bart import (
|
|
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BartForCausalLM,
|
|
BartForConditionalGeneration,
|
|
BartForQuestionAnswering,
|
|
BartForSequenceClassification,
|
|
BartModel,
|
|
BartPretrainedModel,
|
|
PretrainedBartModel,
|
|
)
|
|
from .models.beit import (
|
|
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BeitForImageClassification,
|
|
BeitForMaskedImageModeling,
|
|
BeitForSemanticSegmentation,
|
|
BeitModel,
|
|
BeitPreTrainedModel,
|
|
)
|
|
from .models.bert import (
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BertForMaskedLM,
|
|
BertForMultipleChoice,
|
|
BertForNextSentencePrediction,
|
|
BertForPreTraining,
|
|
BertForQuestionAnswering,
|
|
BertForSequenceClassification,
|
|
BertForTokenClassification,
|
|
BertLayer,
|
|
BertLMHeadModel,
|
|
BertModel,
|
|
BertPreTrainedModel,
|
|
load_tf_weights_in_bert,
|
|
)
|
|
from .models.bert_generation import (
|
|
BertGenerationDecoder,
|
|
BertGenerationEncoder,
|
|
BertGenerationPreTrainedModel,
|
|
load_tf_weights_in_bert_generation,
|
|
)
|
|
from .models.big_bird import (
|
|
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BigBirdForCausalLM,
|
|
BigBirdForMaskedLM,
|
|
BigBirdForMultipleChoice,
|
|
BigBirdForPreTraining,
|
|
BigBirdForQuestionAnswering,
|
|
BigBirdForSequenceClassification,
|
|
BigBirdForTokenClassification,
|
|
BigBirdLayer,
|
|
BigBirdModel,
|
|
BigBirdPreTrainedModel,
|
|
load_tf_weights_in_big_bird,
|
|
)
|
|
from .models.bigbird_pegasus import (
|
|
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BigBirdPegasusForCausalLM,
|
|
BigBirdPegasusForConditionalGeneration,
|
|
BigBirdPegasusForQuestionAnswering,
|
|
BigBirdPegasusForSequenceClassification,
|
|
BigBirdPegasusModel,
|
|
BigBirdPegasusPreTrainedModel,
|
|
)
|
|
from .models.blenderbot import (
|
|
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BlenderbotForCausalLM,
|
|
BlenderbotForConditionalGeneration,
|
|
BlenderbotModel,
|
|
BlenderbotPreTrainedModel,
|
|
)
|
|
from .models.blenderbot_small import (
|
|
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BlenderbotSmallForCausalLM,
|
|
BlenderbotSmallForConditionalGeneration,
|
|
BlenderbotSmallModel,
|
|
BlenderbotSmallPreTrainedModel,
|
|
)
|
|
from .models.bloom import (
|
|
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
BloomForCausalLM,
|
|
BloomForQuestionAnswering,
|
|
BloomForSequenceClassification,
|
|
BloomForTokenClassification,
|
|
BloomModel,
|
|
BloomPreTrainedModel,
|
|
)
|
|
from .models.camembert import (
|
|
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CamembertForCausalLM,
|
|
CamembertForMaskedLM,
|
|
CamembertForMultipleChoice,
|
|
CamembertForQuestionAnswering,
|
|
CamembertForSequenceClassification,
|
|
CamembertForTokenClassification,
|
|
CamembertModel,
|
|
CamembertPreTrainedModel,
|
|
)
|
|
from .models.canine import (
|
|
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CanineForMultipleChoice,
|
|
CanineForQuestionAnswering,
|
|
CanineForSequenceClassification,
|
|
CanineForTokenClassification,
|
|
CanineLayer,
|
|
CanineModel,
|
|
CaninePreTrainedModel,
|
|
load_tf_weights_in_canine,
|
|
)
|
|
from .models.clip import (
|
|
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CLIPModel,
|
|
CLIPPreTrainedModel,
|
|
CLIPTextModel,
|
|
CLIPTextModelWithProjection,
|
|
CLIPVisionModel,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
from .models.clipseg import (
|
|
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CLIPSegForImageSegmentation,
|
|
CLIPSegModel,
|
|
CLIPSegPreTrainedModel,
|
|
CLIPSegTextModel,
|
|
CLIPSegVisionModel,
|
|
)
|
|
from .models.codegen import (
|
|
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CodeGenForCausalLM,
|
|
CodeGenModel,
|
|
CodeGenPreTrainedModel,
|
|
)
|
|
from .models.convbert import (
|
|
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ConvBertForMaskedLM,
|
|
ConvBertForMultipleChoice,
|
|
ConvBertForQuestionAnswering,
|
|
ConvBertForSequenceClassification,
|
|
ConvBertForTokenClassification,
|
|
ConvBertLayer,
|
|
ConvBertModel,
|
|
ConvBertPreTrainedModel,
|
|
load_tf_weights_in_convbert,
|
|
)
|
|
from .models.convnext import (
|
|
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ConvNextForImageClassification,
|
|
ConvNextModel,
|
|
ConvNextPreTrainedModel,
|
|
)
|
|
from .models.ctrl import (
|
|
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CTRLForSequenceClassification,
|
|
CTRLLMHeadModel,
|
|
CTRLModel,
|
|
CTRLPreTrainedModel,
|
|
)
|
|
from .models.cvt import (
|
|
CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
CvtForImageClassification,
|
|
CvtModel,
|
|
CvtPreTrainedModel,
|
|
)
|
|
from .models.data2vec import (
|
|
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
Data2VecAudioForAudioFrameClassification,
|
|
Data2VecAudioForCTC,
|
|
Data2VecAudioForSequenceClassification,
|
|
Data2VecAudioForXVector,
|
|
Data2VecAudioModel,
|
|
Data2VecAudioPreTrainedModel,
|
|
Data2VecTextForCausalLM,
|
|
Data2VecTextForMaskedLM,
|
|
Data2VecTextForMultipleChoice,
|
|
Data2VecTextForQuestionAnswering,
|
|
Data2VecTextForSequenceClassification,
|
|
Data2VecTextForTokenClassification,
|
|
Data2VecTextModel,
|
|
Data2VecTextPreTrainedModel,
|
|
Data2VecVisionForImageClassification,
|
|
Data2VecVisionForSemanticSegmentation,
|
|
Data2VecVisionModel,
|
|
Data2VecVisionPreTrainedModel,
|
|
)
|
|
from .models.deberta import (
|
|
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DebertaForMaskedLM,
|
|
DebertaForQuestionAnswering,
|
|
DebertaForSequenceClassification,
|
|
DebertaForTokenClassification,
|
|
DebertaModel,
|
|
DebertaPreTrainedModel,
|
|
)
|
|
from .models.deberta_v2 import (
|
|
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DebertaV2ForMaskedLM,
|
|
DebertaV2ForMultipleChoice,
|
|
DebertaV2ForQuestionAnswering,
|
|
DebertaV2ForSequenceClassification,
|
|
DebertaV2ForTokenClassification,
|
|
DebertaV2Model,
|
|
DebertaV2PreTrainedModel,
|
|
)
|
|
from .models.decision_transformer import (
|
|
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DecisionTransformerGPT2Model,
|
|
DecisionTransformerGPT2PreTrainedModel,
|
|
DecisionTransformerModel,
|
|
DecisionTransformerPreTrainedModel,
|
|
)
|
|
from .models.deit import (
|
|
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DeiTForImageClassification,
|
|
DeiTForImageClassificationWithTeacher,
|
|
DeiTForMaskedImageModeling,
|
|
DeiTModel,
|
|
DeiTPreTrainedModel,
|
|
)
|
|
from .models.dinat import (
|
|
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DinatForImageClassification,
|
|
DinatModel,
|
|
DinatPreTrainedModel,
|
|
)
|
|
from .models.distilbert import (
|
|
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DistilBertForMaskedLM,
|
|
DistilBertForMultipleChoice,
|
|
DistilBertForQuestionAnswering,
|
|
DistilBertForSequenceClassification,
|
|
DistilBertForTokenClassification,
|
|
DistilBertModel,
|
|
DistilBertPreTrainedModel,
|
|
)
|
|
from .models.donut import DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, DonutSwinModel, DonutSwinPreTrainedModel
|
|
from .models.dpr import (
|
|
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DPRContextEncoder,
|
|
DPRPretrainedContextEncoder,
|
|
DPRPreTrainedModel,
|
|
DPRPretrainedQuestionEncoder,
|
|
DPRPretrainedReader,
|
|
DPRQuestionEncoder,
|
|
DPRReader,
|
|
)
|
|
from .models.dpt import (
|
|
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
DPTForDepthEstimation,
|
|
DPTForSemanticSegmentation,
|
|
DPTModel,
|
|
DPTPreTrainedModel,
|
|
)
|
|
from .models.electra import (
|
|
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ElectraForCausalLM,
|
|
ElectraForMaskedLM,
|
|
ElectraForMultipleChoice,
|
|
ElectraForPreTraining,
|
|
ElectraForQuestionAnswering,
|
|
ElectraForSequenceClassification,
|
|
ElectraForTokenClassification,
|
|
ElectraModel,
|
|
ElectraPreTrainedModel,
|
|
load_tf_weights_in_electra,
|
|
)
|
|
from .models.encoder_decoder import EncoderDecoderModel
|
|
from .models.ernie import (
|
|
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ErnieForCausalLM,
|
|
ErnieForMaskedLM,
|
|
ErnieForMultipleChoice,
|
|
ErnieForNextSentencePrediction,
|
|
ErnieForPreTraining,
|
|
ErnieForQuestionAnswering,
|
|
ErnieForSequenceClassification,
|
|
ErnieForTokenClassification,
|
|
ErnieModel,
|
|
ErniePreTrainedModel,
|
|
)
|
|
from .models.esm import (
|
|
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
EsmFoldPreTrainedModel,
|
|
EsmForMaskedLM,
|
|
EsmForProteinFolding,
|
|
EsmForSequenceClassification,
|
|
EsmForTokenClassification,
|
|
EsmModel,
|
|
EsmPreTrainedModel,
|
|
)
|
|
from .models.flaubert import (
|
|
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
FlaubertForMultipleChoice,
|
|
FlaubertForQuestionAnswering,
|
|
FlaubertForQuestionAnsweringSimple,
|
|
FlaubertForSequenceClassification,
|
|
FlaubertForTokenClassification,
|
|
FlaubertModel,
|
|
FlaubertPreTrainedModel,
|
|
FlaubertWithLMHeadModel,
|
|
)
|
|
from .models.flava import (
|
|
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
FlavaForPreTraining,
|
|
FlavaImageCodebook,
|
|
FlavaImageModel,
|
|
FlavaModel,
|
|
FlavaMultimodalModel,
|
|
FlavaPreTrainedModel,
|
|
FlavaTextModel,
|
|
)
|
|
from .models.fnet import (
|
|
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
FNetForMaskedLM,
|
|
FNetForMultipleChoice,
|
|
FNetForNextSentencePrediction,
|
|
FNetForPreTraining,
|
|
FNetForQuestionAnswering,
|
|
FNetForSequenceClassification,
|
|
FNetForTokenClassification,
|
|
FNetLayer,
|
|
FNetModel,
|
|
FNetPreTrainedModel,
|
|
)
|
|
from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
|
|
from .models.funnel import (
|
|
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
FunnelBaseModel,
|
|
FunnelForMaskedLM,
|
|
FunnelForMultipleChoice,
|
|
FunnelForPreTraining,
|
|
FunnelForQuestionAnswering,
|
|
FunnelForSequenceClassification,
|
|
FunnelForTokenClassification,
|
|
FunnelModel,
|
|
FunnelPreTrainedModel,
|
|
load_tf_weights_in_funnel,
|
|
)
|
|
from .models.glpn import (
|
|
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GLPNForDepthEstimation,
|
|
GLPNModel,
|
|
GLPNPreTrainedModel,
|
|
)
|
|
from .models.gpt2 import (
|
|
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GPT2DoubleHeadsModel,
|
|
GPT2ForSequenceClassification,
|
|
GPT2ForTokenClassification,
|
|
GPT2LMHeadModel,
|
|
GPT2Model,
|
|
GPT2PreTrainedModel,
|
|
load_tf_weights_in_gpt2,
|
|
)
|
|
from .models.gpt_neo import (
|
|
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GPTNeoForCausalLM,
|
|
GPTNeoForSequenceClassification,
|
|
GPTNeoModel,
|
|
GPTNeoPreTrainedModel,
|
|
load_tf_weights_in_gpt_neo,
|
|
)
|
|
from .models.gpt_neox import (
|
|
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GPTNeoXForCausalLM,
|
|
GPTNeoXLayer,
|
|
GPTNeoXModel,
|
|
GPTNeoXPreTrainedModel,
|
|
)
|
|
from .models.gpt_neox_japanese import (
|
|
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GPTNeoXJapaneseForCausalLM,
|
|
GPTNeoXJapaneseLayer,
|
|
GPTNeoXJapaneseModel,
|
|
GPTNeoXJapanesePreTrainedModel,
|
|
)
|
|
from .models.gptj import (
|
|
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GPTJForCausalLM,
|
|
GPTJForQuestionAnswering,
|
|
GPTJForSequenceClassification,
|
|
GPTJModel,
|
|
GPTJPreTrainedModel,
|
|
)
|
|
from .models.groupvit import (
|
|
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
GroupViTModel,
|
|
GroupViTPreTrainedModel,
|
|
GroupViTTextModel,
|
|
GroupViTVisionModel,
|
|
)
|
|
from .models.hubert import (
|
|
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
HubertForCTC,
|
|
HubertForSequenceClassification,
|
|
HubertModel,
|
|
HubertPreTrainedModel,
|
|
)
|
|
from .models.ibert import (
|
|
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
IBertForMaskedLM,
|
|
IBertForMultipleChoice,
|
|
IBertForQuestionAnswering,
|
|
IBertForSequenceClassification,
|
|
IBertForTokenClassification,
|
|
IBertModel,
|
|
IBertPreTrainedModel,
|
|
)
|
|
from .models.imagegpt import (
|
|
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ImageGPTForCausalImageModeling,
|
|
ImageGPTForImageClassification,
|
|
ImageGPTModel,
|
|
ImageGPTPreTrainedModel,
|
|
load_tf_weights_in_imagegpt,
|
|
)
|
|
from .models.jukebox import (
|
|
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
JukeboxModel,
|
|
JukeboxPreTrainedModel,
|
|
JukeboxPrior,
|
|
JukeboxVQVAE,
|
|
)
|
|
from .models.layoutlm import (
|
|
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LayoutLMForMaskedLM,
|
|
LayoutLMForQuestionAnswering,
|
|
LayoutLMForSequenceClassification,
|
|
LayoutLMForTokenClassification,
|
|
LayoutLMModel,
|
|
LayoutLMPreTrainedModel,
|
|
)
|
|
from .models.layoutlmv2 import (
|
|
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LayoutLMv2ForQuestionAnswering,
|
|
LayoutLMv2ForSequenceClassification,
|
|
LayoutLMv2ForTokenClassification,
|
|
LayoutLMv2Model,
|
|
LayoutLMv2PreTrainedModel,
|
|
)
|
|
from .models.layoutlmv3 import (
|
|
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LayoutLMv3ForQuestionAnswering,
|
|
LayoutLMv3ForSequenceClassification,
|
|
LayoutLMv3ForTokenClassification,
|
|
LayoutLMv3Model,
|
|
LayoutLMv3PreTrainedModel,
|
|
)
|
|
from .models.led import (
|
|
LED_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LEDForConditionalGeneration,
|
|
LEDForQuestionAnswering,
|
|
LEDForSequenceClassification,
|
|
LEDModel,
|
|
LEDPreTrainedModel,
|
|
)
|
|
from .models.levit import (
|
|
LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LevitForImageClassification,
|
|
LevitForImageClassificationWithTeacher,
|
|
LevitModel,
|
|
LevitPreTrainedModel,
|
|
)
|
|
from .models.lilt import (
|
|
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LiltForQuestionAnswering,
|
|
LiltForSequenceClassification,
|
|
LiltForTokenClassification,
|
|
LiltModel,
|
|
LiltPreTrainedModel,
|
|
)
|
|
from .models.longformer import (
|
|
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LongformerForMaskedLM,
|
|
LongformerForMultipleChoice,
|
|
LongformerForQuestionAnswering,
|
|
LongformerForSequenceClassification,
|
|
LongformerForTokenClassification,
|
|
LongformerModel,
|
|
LongformerPreTrainedModel,
|
|
LongformerSelfAttention,
|
|
)
|
|
from .models.longt5 import (
|
|
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LongT5EncoderModel,
|
|
LongT5ForConditionalGeneration,
|
|
LongT5Model,
|
|
LongT5PreTrainedModel,
|
|
)
|
|
from .models.luke import (
|
|
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
LukeForEntityClassification,
|
|
LukeForEntityPairClassification,
|
|
LukeForEntitySpanClassification,
|
|
LukeForMaskedLM,
|
|
LukeForMultipleChoice,
|
|
LukeForQuestionAnswering,
|
|
LukeForSequenceClassification,
|
|
LukeForTokenClassification,
|
|
LukeModel,
|
|
LukePreTrainedModel,
|
|
)
|
|
from .models.lxmert import (
|
|
LxmertEncoder,
|
|
LxmertForPreTraining,
|
|
LxmertForQuestionAnswering,
|
|
LxmertModel,
|
|
LxmertPreTrainedModel,
|
|
LxmertVisualFeatureEncoder,
|
|
LxmertXLayer,
|
|
)
|
|
from .models.m2m_100 import (
|
|
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
M2M100ForConditionalGeneration,
|
|
M2M100Model,
|
|
M2M100PreTrainedModel,
|
|
)
|
|
from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel
|
|
from .models.markuplm import (
|
|
MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MarkupLMForQuestionAnswering,
|
|
MarkupLMForSequenceClassification,
|
|
MarkupLMForTokenClassification,
|
|
MarkupLMModel,
|
|
MarkupLMPreTrainedModel,
|
|
)
|
|
from .models.maskformer import (
|
|
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MaskFormerForInstanceSegmentation,
|
|
MaskFormerModel,
|
|
MaskFormerPreTrainedModel,
|
|
MaskFormerSwinBackbone,
|
|
)
|
|
from .models.mbart import (
|
|
MBartForCausalLM,
|
|
MBartForConditionalGeneration,
|
|
MBartForQuestionAnswering,
|
|
MBartForSequenceClassification,
|
|
MBartModel,
|
|
MBartPreTrainedModel,
|
|
)
|
|
from .models.mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
|
|
from .models.megatron_bert import (
|
|
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MegatronBertForCausalLM,
|
|
MegatronBertForMaskedLM,
|
|
MegatronBertForMultipleChoice,
|
|
MegatronBertForNextSentencePrediction,
|
|
MegatronBertForPreTraining,
|
|
MegatronBertForQuestionAnswering,
|
|
MegatronBertForSequenceClassification,
|
|
MegatronBertForTokenClassification,
|
|
MegatronBertModel,
|
|
MegatronBertPreTrainedModel,
|
|
)
|
|
from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
|
|
from .models.mobilebert import (
|
|
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MobileBertForMaskedLM,
|
|
MobileBertForMultipleChoice,
|
|
MobileBertForNextSentencePrediction,
|
|
MobileBertForPreTraining,
|
|
MobileBertForQuestionAnswering,
|
|
MobileBertForSequenceClassification,
|
|
MobileBertForTokenClassification,
|
|
MobileBertLayer,
|
|
MobileBertModel,
|
|
MobileBertPreTrainedModel,
|
|
load_tf_weights_in_mobilebert,
|
|
)
|
|
from .models.mobilenet_v1 import (
|
|
MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MobileNetV1ForImageClassification,
|
|
MobileNetV1Model,
|
|
MobileNetV1PreTrainedModel,
|
|
load_tf_weights_in_mobilenet_v1,
|
|
)
|
|
from .models.mobilenet_v2 import (
|
|
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MobileNetV2ForImageClassification,
|
|
MobileNetV2ForSemanticSegmentation,
|
|
MobileNetV2Model,
|
|
MobileNetV2PreTrainedModel,
|
|
load_tf_weights_in_mobilenet_v2,
|
|
)
|
|
from .models.mobilevit import (
|
|
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MobileViTForImageClassification,
|
|
MobileViTForSemanticSegmentation,
|
|
MobileViTModel,
|
|
MobileViTPreTrainedModel,
|
|
)
|
|
from .models.mpnet import (
|
|
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MPNetForMaskedLM,
|
|
MPNetForMultipleChoice,
|
|
MPNetForQuestionAnswering,
|
|
MPNetForSequenceClassification,
|
|
MPNetForTokenClassification,
|
|
MPNetLayer,
|
|
MPNetModel,
|
|
MPNetPreTrainedModel,
|
|
)
|
|
from .models.mt5 import MT5EncoderModel, MT5ForConditionalGeneration, MT5Model
|
|
from .models.mvp import (
|
|
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
MvpForCausalLM,
|
|
MvpForConditionalGeneration,
|
|
MvpForQuestionAnswering,
|
|
MvpForSequenceClassification,
|
|
MvpModel,
|
|
MvpPreTrainedModel,
|
|
)
|
|
from .models.nat import (
|
|
NAT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
NatForImageClassification,
|
|
NatModel,
|
|
NatPreTrainedModel,
|
|
)
|
|
from .models.nezha import (
|
|
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
NezhaForMaskedLM,
|
|
NezhaForMultipleChoice,
|
|
NezhaForNextSentencePrediction,
|
|
NezhaForPreTraining,
|
|
NezhaForQuestionAnswering,
|
|
NezhaForSequenceClassification,
|
|
NezhaForTokenClassification,
|
|
NezhaModel,
|
|
NezhaPreTrainedModel,
|
|
)
|
|
from .models.nystromformer import (
|
|
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
NystromformerForMaskedLM,
|
|
NystromformerForMultipleChoice,
|
|
NystromformerForQuestionAnswering,
|
|
NystromformerForSequenceClassification,
|
|
NystromformerForTokenClassification,
|
|
NystromformerLayer,
|
|
NystromformerModel,
|
|
NystromformerPreTrainedModel,
|
|
)
|
|
from .models.openai import (
|
|
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
OpenAIGPTDoubleHeadsModel,
|
|
OpenAIGPTForSequenceClassification,
|
|
OpenAIGPTLMHeadModel,
|
|
OpenAIGPTModel,
|
|
OpenAIGPTPreTrainedModel,
|
|
load_tf_weights_in_openai_gpt,
|
|
)
|
|
from .models.opt import (
|
|
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
OPTForCausalLM,
|
|
OPTForQuestionAnswering,
|
|
OPTForSequenceClassification,
|
|
OPTModel,
|
|
OPTPreTrainedModel,
|
|
)
|
|
from .models.owlvit import (
|
|
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
OwlViTForObjectDetection,
|
|
OwlViTModel,
|
|
OwlViTPreTrainedModel,
|
|
OwlViTTextModel,
|
|
OwlViTVisionModel,
|
|
)
|
|
from .models.pegasus import (
|
|
PegasusForCausalLM,
|
|
PegasusForConditionalGeneration,
|
|
PegasusModel,
|
|
PegasusPreTrainedModel,
|
|
)
|
|
from .models.pegasus_x import (
|
|
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
PegasusXForConditionalGeneration,
|
|
PegasusXModel,
|
|
PegasusXPreTrainedModel,
|
|
)
|
|
from .models.perceiver import (
|
|
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
PerceiverForImageClassificationConvProcessing,
|
|
PerceiverForImageClassificationFourier,
|
|
PerceiverForImageClassificationLearned,
|
|
PerceiverForMaskedLM,
|
|
PerceiverForMultimodalAutoencoding,
|
|
PerceiverForOpticalFlow,
|
|
PerceiverForSequenceClassification,
|
|
PerceiverLayer,
|
|
PerceiverModel,
|
|
PerceiverPreTrainedModel,
|
|
)
|
|
from .models.plbart import (
|
|
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
PLBartForCausalLM,
|
|
PLBartForConditionalGeneration,
|
|
PLBartForSequenceClassification,
|
|
PLBartModel,
|
|
PLBartPreTrainedModel,
|
|
)
|
|
from .models.poolformer import (
|
|
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
PoolFormerForImageClassification,
|
|
PoolFormerModel,
|
|
PoolFormerPreTrainedModel,
|
|
)
|
|
from .models.prophetnet import (
|
|
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ProphetNetDecoder,
|
|
ProphetNetEncoder,
|
|
ProphetNetForCausalLM,
|
|
ProphetNetForConditionalGeneration,
|
|
ProphetNetModel,
|
|
ProphetNetPreTrainedModel,
|
|
)
|
|
from .models.qdqbert import (
|
|
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
QDQBertForMaskedLM,
|
|
QDQBertForMultipleChoice,
|
|
QDQBertForNextSentencePrediction,
|
|
QDQBertForQuestionAnswering,
|
|
QDQBertForSequenceClassification,
|
|
QDQBertForTokenClassification,
|
|
QDQBertLayer,
|
|
QDQBertLMHeadModel,
|
|
QDQBertModel,
|
|
QDQBertPreTrainedModel,
|
|
load_tf_weights_in_qdqbert,
|
|
)
|
|
from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
|
|
from .models.realm import (
|
|
REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RealmEmbedder,
|
|
RealmForOpenQA,
|
|
RealmKnowledgeAugEncoder,
|
|
RealmPreTrainedModel,
|
|
RealmReader,
|
|
RealmRetriever,
|
|
RealmScorer,
|
|
load_tf_weights_in_realm,
|
|
)
|
|
from .models.reformer import (
|
|
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ReformerAttention,
|
|
ReformerForMaskedLM,
|
|
ReformerForQuestionAnswering,
|
|
ReformerForSequenceClassification,
|
|
ReformerLayer,
|
|
ReformerModel,
|
|
ReformerModelWithLMHead,
|
|
ReformerPreTrainedModel,
|
|
)
|
|
from .models.regnet import (
|
|
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RegNetForImageClassification,
|
|
RegNetModel,
|
|
RegNetPreTrainedModel,
|
|
)
|
|
from .models.rembert import (
|
|
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RemBertForCausalLM,
|
|
RemBertForMaskedLM,
|
|
RemBertForMultipleChoice,
|
|
RemBertForQuestionAnswering,
|
|
RemBertForSequenceClassification,
|
|
RemBertForTokenClassification,
|
|
RemBertLayer,
|
|
RemBertModel,
|
|
RemBertPreTrainedModel,
|
|
load_tf_weights_in_rembert,
|
|
)
|
|
from .models.resnet import (
|
|
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ResNetBackbone,
|
|
ResNetForImageClassification,
|
|
ResNetModel,
|
|
ResNetPreTrainedModel,
|
|
)
|
|
from .models.retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel
|
|
from .models.roberta import (
|
|
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RobertaForCausalLM,
|
|
RobertaForMaskedLM,
|
|
RobertaForMultipleChoice,
|
|
RobertaForQuestionAnswering,
|
|
RobertaForSequenceClassification,
|
|
RobertaForTokenClassification,
|
|
RobertaModel,
|
|
RobertaPreTrainedModel,
|
|
)
|
|
from .models.roc_bert import (
|
|
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RoCBertForCausalLM,
|
|
RoCBertForMaskedLM,
|
|
RoCBertForMultipleChoice,
|
|
RoCBertForPreTraining,
|
|
RoCBertForQuestionAnswering,
|
|
RoCBertForSequenceClassification,
|
|
RoCBertForTokenClassification,
|
|
RoCBertLayer,
|
|
RoCBertModel,
|
|
RoCBertPreTrainedModel,
|
|
load_tf_weights_in_roc_bert,
|
|
)
|
|
from .models.roformer import (
|
|
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
RoFormerForCausalLM,
|
|
RoFormerForMaskedLM,
|
|
RoFormerForMultipleChoice,
|
|
RoFormerForQuestionAnswering,
|
|
RoFormerForSequenceClassification,
|
|
RoFormerForTokenClassification,
|
|
RoFormerLayer,
|
|
RoFormerModel,
|
|
RoFormerPreTrainedModel,
|
|
load_tf_weights_in_roformer,
|
|
)
|
|
from .models.segformer import (
|
|
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SegformerDecodeHead,
|
|
SegformerForImageClassification,
|
|
SegformerForSemanticSegmentation,
|
|
SegformerLayer,
|
|
SegformerModel,
|
|
SegformerPreTrainedModel,
|
|
)
|
|
from .models.sew import (
|
|
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SEWForCTC,
|
|
SEWForSequenceClassification,
|
|
SEWModel,
|
|
SEWPreTrainedModel,
|
|
)
|
|
from .models.sew_d import (
|
|
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SEWDForCTC,
|
|
SEWDForSequenceClassification,
|
|
SEWDModel,
|
|
SEWDPreTrainedModel,
|
|
)
|
|
from .models.speech_encoder_decoder import SpeechEncoderDecoderModel
|
|
from .models.speech_to_text import (
|
|
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
Speech2TextForConditionalGeneration,
|
|
Speech2TextModel,
|
|
Speech2TextPreTrainedModel,
|
|
)
|
|
from .models.speech_to_text_2 import Speech2Text2ForCausalLM, Speech2Text2PreTrainedModel
|
|
from .models.splinter import (
|
|
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SplinterForPreTraining,
|
|
SplinterForQuestionAnswering,
|
|
SplinterLayer,
|
|
SplinterModel,
|
|
SplinterPreTrainedModel,
|
|
)
|
|
from .models.squeezebert import (
|
|
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SqueezeBertForMaskedLM,
|
|
SqueezeBertForMultipleChoice,
|
|
SqueezeBertForQuestionAnswering,
|
|
SqueezeBertForSequenceClassification,
|
|
SqueezeBertForTokenClassification,
|
|
SqueezeBertModel,
|
|
SqueezeBertModule,
|
|
SqueezeBertPreTrainedModel,
|
|
)
|
|
from .models.swin import (
|
|
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SwinForImageClassification,
|
|
SwinForMaskedImageModeling,
|
|
SwinModel,
|
|
SwinPreTrainedModel,
|
|
)
|
|
from .models.swinv2 import (
|
|
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
Swinv2ForImageClassification,
|
|
Swinv2ForMaskedImageModeling,
|
|
Swinv2Model,
|
|
Swinv2PreTrainedModel,
|
|
)
|
|
from .models.switch_transformers import (
|
|
SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
SwitchTransformersEncoderModel,
|
|
SwitchTransformersForConditionalGeneration,
|
|
SwitchTransformersModel,
|
|
SwitchTransformersPreTrainedModel,
|
|
SwitchTransformersSparseMLP,
|
|
SwitchTransformersTop1Router,
|
|
)
|
|
from .models.t5 import (
|
|
T5_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
T5EncoderModel,
|
|
T5ForConditionalGeneration,
|
|
T5Model,
|
|
T5PreTrainedModel,
|
|
load_tf_weights_in_t5,
|
|
)
|
|
from .models.tapas import (
|
|
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TapasForMaskedLM,
|
|
TapasForQuestionAnswering,
|
|
TapasForSequenceClassification,
|
|
TapasModel,
|
|
TapasPreTrainedModel,
|
|
load_tf_weights_in_tapas,
|
|
)
|
|
from .models.time_series_transformer import (
|
|
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TimeSeriesTransformerForPrediction,
|
|
TimeSeriesTransformerModel,
|
|
TimeSeriesTransformerPreTrainedModel,
|
|
)
|
|
from .models.trajectory_transformer import (
|
|
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TrajectoryTransformerModel,
|
|
TrajectoryTransformerPreTrainedModel,
|
|
)
|
|
from .models.transfo_xl import (
|
|
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
AdaptiveEmbedding,
|
|
TransfoXLForSequenceClassification,
|
|
TransfoXLLMHeadModel,
|
|
TransfoXLModel,
|
|
TransfoXLPreTrainedModel,
|
|
load_tf_weights_in_transfo_xl,
|
|
)
|
|
from .models.trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
|
|
from .models.unispeech import (
|
|
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
UniSpeechForCTC,
|
|
UniSpeechForPreTraining,
|
|
UniSpeechForSequenceClassification,
|
|
UniSpeechModel,
|
|
UniSpeechPreTrainedModel,
|
|
)
|
|
from .models.unispeech_sat import (
|
|
UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
UniSpeechSatForAudioFrameClassification,
|
|
UniSpeechSatForCTC,
|
|
UniSpeechSatForPreTraining,
|
|
UniSpeechSatForSequenceClassification,
|
|
UniSpeechSatForXVector,
|
|
UniSpeechSatModel,
|
|
UniSpeechSatPreTrainedModel,
|
|
)
|
|
from .models.van import (
|
|
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
VanForImageClassification,
|
|
VanModel,
|
|
VanPreTrainedModel,
|
|
)
|
|
from .models.videomae import (
|
|
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
VideoMAEForPreTraining,
|
|
VideoMAEForVideoClassification,
|
|
VideoMAEModel,
|
|
VideoMAEPreTrainedModel,
|
|
)
|
|
from .models.vilt import (
|
|
VILT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ViltForImageAndTextRetrieval,
|
|
ViltForImagesAndTextClassification,
|
|
ViltForMaskedLM,
|
|
ViltForQuestionAnswering,
|
|
ViltForTokenClassification,
|
|
ViltLayer,
|
|
ViltModel,
|
|
ViltPreTrainedModel,
|
|
)
|
|
from .models.vision_encoder_decoder import VisionEncoderDecoderModel
|
|
from .models.vision_text_dual_encoder import VisionTextDualEncoderModel
|
|
from .models.visual_bert import (
|
|
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
VisualBertForMultipleChoice,
|
|
VisualBertForPreTraining,
|
|
VisualBertForQuestionAnswering,
|
|
VisualBertForRegionToPhraseAlignment,
|
|
VisualBertForVisualReasoning,
|
|
VisualBertLayer,
|
|
VisualBertModel,
|
|
VisualBertPreTrainedModel,
|
|
)
|
|
from .models.vit import (
|
|
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ViTForImageClassification,
|
|
ViTForMaskedImageModeling,
|
|
ViTModel,
|
|
ViTPreTrainedModel,
|
|
)
|
|
from .models.vit_mae import (
|
|
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ViTMAEForPreTraining,
|
|
ViTMAELayer,
|
|
ViTMAEModel,
|
|
ViTMAEPreTrainedModel,
|
|
)
|
|
from .models.vit_msn import (
|
|
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
ViTMSNForImageClassification,
|
|
ViTMSNModel,
|
|
ViTMSNPreTrainedModel,
|
|
)
|
|
from .models.wav2vec2 import (
|
|
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
Wav2Vec2ForAudioFrameClassification,
|
|
Wav2Vec2ForCTC,
|
|
Wav2Vec2ForMaskedLM,
|
|
Wav2Vec2ForPreTraining,
|
|
Wav2Vec2ForSequenceClassification,
|
|
Wav2Vec2ForXVector,
|
|
Wav2Vec2Model,
|
|
Wav2Vec2PreTrainedModel,
|
|
)
|
|
from .models.wav2vec2_conformer import (
|
|
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
Wav2Vec2ConformerForAudioFrameClassification,
|
|
Wav2Vec2ConformerForCTC,
|
|
Wav2Vec2ConformerForPreTraining,
|
|
Wav2Vec2ConformerForSequenceClassification,
|
|
Wav2Vec2ConformerForXVector,
|
|
Wav2Vec2ConformerModel,
|
|
Wav2Vec2ConformerPreTrainedModel,
|
|
)
|
|
from .models.wavlm import (
|
|
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
WavLMForAudioFrameClassification,
|
|
WavLMForCTC,
|
|
WavLMForSequenceClassification,
|
|
WavLMForXVector,
|
|
WavLMModel,
|
|
WavLMPreTrainedModel,
|
|
)
|
|
from .models.whisper import (
|
|
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
WhisperForConditionalGeneration,
|
|
WhisperModel,
|
|
WhisperPreTrainedModel,
|
|
)
|
|
from .models.x_clip import (
|
|
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XCLIPModel,
|
|
XCLIPPreTrainedModel,
|
|
XCLIPTextModel,
|
|
XCLIPVisionModel,
|
|
)
|
|
from .models.xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
|
|
from .models.xlm import (
|
|
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XLMForMultipleChoice,
|
|
XLMForQuestionAnswering,
|
|
XLMForQuestionAnsweringSimple,
|
|
XLMForSequenceClassification,
|
|
XLMForTokenClassification,
|
|
XLMModel,
|
|
XLMPreTrainedModel,
|
|
XLMWithLMHeadModel,
|
|
)
|
|
from .models.xlm_prophetnet import (
|
|
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XLMProphetNetDecoder,
|
|
XLMProphetNetEncoder,
|
|
XLMProphetNetForCausalLM,
|
|
XLMProphetNetForConditionalGeneration,
|
|
XLMProphetNetModel,
|
|
XLMProphetNetPreTrainedModel,
|
|
)
|
|
from .models.xlm_roberta import (
|
|
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XLMRobertaForCausalLM,
|
|
XLMRobertaForMaskedLM,
|
|
XLMRobertaForMultipleChoice,
|
|
XLMRobertaForQuestionAnswering,
|
|
XLMRobertaForSequenceClassification,
|
|
XLMRobertaForTokenClassification,
|
|
XLMRobertaModel,
|
|
XLMRobertaPreTrainedModel,
|
|
)
|
|
from .models.xlm_roberta_xl import (
|
|
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XLMRobertaXLForCausalLM,
|
|
XLMRobertaXLForMaskedLM,
|
|
XLMRobertaXLForMultipleChoice,
|
|
XLMRobertaXLForQuestionAnswering,
|
|
XLMRobertaXLForSequenceClassification,
|
|
XLMRobertaXLForTokenClassification,
|
|
XLMRobertaXLModel,
|
|
XLMRobertaXLPreTrainedModel,
|
|
)
|
|
from .models.xlnet import (
|
|
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
XLNetForMultipleChoice,
|
|
XLNetForQuestionAnswering,
|
|
XLNetForQuestionAnsweringSimple,
|
|
XLNetForSequenceClassification,
|
|
XLNetForTokenClassification,
|
|
XLNetLMHeadModel,
|
|
XLNetModel,
|
|
XLNetPreTrainedModel,
|
|
load_tf_weights_in_xlnet,
|
|
)
|
|
from .models.yolos import (
|
|
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
YolosForObjectDetection,
|
|
YolosModel,
|
|
YolosPreTrainedModel,
|
|
)
|
|
from .models.yoso import (
|
|
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
YosoForMaskedLM,
|
|
YosoForMultipleChoice,
|
|
YosoForQuestionAnswering,
|
|
YosoForSequenceClassification,
|
|
YosoForTokenClassification,
|
|
YosoLayer,
|
|
YosoModel,
|
|
YosoPreTrainedModel,
|
|
)
|
|
|
|
# Optimization
|
|
from .optimization import (
|
|
Adafactor,
|
|
AdamW,
|
|
get_constant_schedule,
|
|
get_constant_schedule_with_warmup,
|
|
get_cosine_schedule_with_warmup,
|
|
get_cosine_with_hard_restarts_schedule_with_warmup,
|
|
get_linear_schedule_with_warmup,
|
|
get_polynomial_decay_schedule_with_warmup,
|
|
get_scheduler,
|
|
)
|
|
from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer
|
|
|
|
# Trainer
|
|
from .trainer import Trainer
|
|
from .trainer_pt_utils import torch_distributed_zero_first
|
|
from .trainer_seq2seq import Seq2SeqTrainer
|
|
|
|
# TensorFlow
|
|
try:
|
|
if not is_tf_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
# Import the same objects as dummies to get them in the namespace.
|
|
# They will raise an import error if the user tries to instantiate / use them.
|
|
from .utils.dummy_tf_objects import *
|
|
else:
|
|
from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments
|
|
|
|
# Benchmarks
|
|
from .benchmark.benchmark_tf import TensorFlowBenchmark
|
|
from .generation import (
|
|
TFForcedBOSTokenLogitsProcessor,
|
|
TFForcedEOSTokenLogitsProcessor,
|
|
TFGenerationMixin,
|
|
TFLogitsProcessor,
|
|
TFLogitsProcessorList,
|
|
TFLogitsWarper,
|
|
TFMinLengthLogitsProcessor,
|
|
TFNoBadWordsLogitsProcessor,
|
|
TFNoRepeatNGramLogitsProcessor,
|
|
TFRepetitionPenaltyLogitsProcessor,
|
|
TFTemperatureLogitsWarper,
|
|
TFTopKLogitsWarper,
|
|
TFTopPLogitsWarper,
|
|
tf_top_k_top_p_filtering,
|
|
)
|
|
from .keras_callbacks import KerasMetricCallback, PushToHubCallback
|
|
from .modeling_tf_layoutlm import (
|
|
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFLayoutLMForMaskedLM,
|
|
TFLayoutLMForQuestionAnswering,
|
|
TFLayoutLMForSequenceClassification,
|
|
TFLayoutLMForTokenClassification,
|
|
TFLayoutLMMainLayer,
|
|
TFLayoutLMModel,
|
|
TFLayoutLMPreTrainedModel,
|
|
)
|
|
from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list
|
|
|
|
# TensorFlow model imports
|
|
from .models.albert import (
|
|
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFAlbertForMaskedLM,
|
|
TFAlbertForMultipleChoice,
|
|
TFAlbertForPreTraining,
|
|
TFAlbertForQuestionAnswering,
|
|
TFAlbertForSequenceClassification,
|
|
TFAlbertForTokenClassification,
|
|
TFAlbertMainLayer,
|
|
TFAlbertModel,
|
|
TFAlbertPreTrainedModel,
|
|
)
|
|
from .models.auto import (
|
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
|
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
|
TF_MODEL_FOR_MASKED_LM_MAPPING,
|
|
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
|
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
|
|
TF_MODEL_FOR_PRETRAINING_MAPPING,
|
|
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
|
|
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
|
|
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
|
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
|
|
TF_MODEL_MAPPING,
|
|
TF_MODEL_WITH_LM_HEAD_MAPPING,
|
|
TFAutoModel,
|
|
TFAutoModelForCausalLM,
|
|
TFAutoModelForDocumentQuestionAnswering,
|
|
TFAutoModelForImageClassification,
|
|
TFAutoModelForMaskedLM,
|
|
TFAutoModelForMultipleChoice,
|
|
TFAutoModelForNextSentencePrediction,
|
|
TFAutoModelForPreTraining,
|
|
TFAutoModelForQuestionAnswering,
|
|
TFAutoModelForSemanticSegmentation,
|
|
TFAutoModelForSeq2SeqLM,
|
|
TFAutoModelForSequenceClassification,
|
|
TFAutoModelForSpeechSeq2Seq,
|
|
TFAutoModelForTableQuestionAnswering,
|
|
TFAutoModelForTokenClassification,
|
|
TFAutoModelForVision2Seq,
|
|
TFAutoModelWithLMHead,
|
|
)
|
|
from .models.bart import TFBartForConditionalGeneration, TFBartModel, TFBartPretrainedModel
|
|
from .models.bert import (
|
|
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFBertEmbeddings,
|
|
TFBertForMaskedLM,
|
|
TFBertForMultipleChoice,
|
|
TFBertForNextSentencePrediction,
|
|
TFBertForPreTraining,
|
|
TFBertForQuestionAnswering,
|
|
TFBertForSequenceClassification,
|
|
TFBertForTokenClassification,
|
|
TFBertLMHeadModel,
|
|
TFBertMainLayer,
|
|
TFBertModel,
|
|
TFBertPreTrainedModel,
|
|
)
|
|
from .models.blenderbot import (
|
|
TFBlenderbotForConditionalGeneration,
|
|
TFBlenderbotModel,
|
|
TFBlenderbotPreTrainedModel,
|
|
)
|
|
from .models.blenderbot_small import (
|
|
TFBlenderbotSmallForConditionalGeneration,
|
|
TFBlenderbotSmallModel,
|
|
TFBlenderbotSmallPreTrainedModel,
|
|
)
|
|
from .models.camembert import (
|
|
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFCamembertForCausalLM,
|
|
TFCamembertForMaskedLM,
|
|
TFCamembertForMultipleChoice,
|
|
TFCamembertForQuestionAnswering,
|
|
TFCamembertForSequenceClassification,
|
|
TFCamembertForTokenClassification,
|
|
TFCamembertModel,
|
|
TFCamembertPreTrainedModel,
|
|
)
|
|
from .models.clip import (
|
|
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFCLIPModel,
|
|
TFCLIPPreTrainedModel,
|
|
TFCLIPTextModel,
|
|
TFCLIPVisionModel,
|
|
)
|
|
from .models.convbert import (
|
|
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFConvBertForMaskedLM,
|
|
TFConvBertForMultipleChoice,
|
|
TFConvBertForQuestionAnswering,
|
|
TFConvBertForSequenceClassification,
|
|
TFConvBertForTokenClassification,
|
|
TFConvBertLayer,
|
|
TFConvBertModel,
|
|
TFConvBertPreTrainedModel,
|
|
)
|
|
from .models.convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
|
|
from .models.ctrl import (
|
|
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFCTRLForSequenceClassification,
|
|
TFCTRLLMHeadModel,
|
|
TFCTRLModel,
|
|
TFCTRLPreTrainedModel,
|
|
)
|
|
from .models.cvt import (
|
|
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFCvtForImageClassification,
|
|
TFCvtModel,
|
|
TFCvtPreTrainedModel,
|
|
)
|
|
from .models.data2vec import (
|
|
TFData2VecVisionForImageClassification,
|
|
TFData2VecVisionForSemanticSegmentation,
|
|
TFData2VecVisionModel,
|
|
TFData2VecVisionPreTrainedModel,
|
|
)
|
|
from .models.deberta import (
|
|
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDebertaForMaskedLM,
|
|
TFDebertaForQuestionAnswering,
|
|
TFDebertaForSequenceClassification,
|
|
TFDebertaForTokenClassification,
|
|
TFDebertaModel,
|
|
TFDebertaPreTrainedModel,
|
|
)
|
|
from .models.deberta_v2 import (
|
|
TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDebertaV2ForMaskedLM,
|
|
TFDebertaV2ForQuestionAnswering,
|
|
TFDebertaV2ForSequenceClassification,
|
|
TFDebertaV2ForTokenClassification,
|
|
TFDebertaV2Model,
|
|
TFDebertaV2PreTrainedModel,
|
|
)
|
|
from .models.deit import (
|
|
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDeiTForImageClassification,
|
|
TFDeiTForImageClassificationWithTeacher,
|
|
TFDeiTForMaskedImageModeling,
|
|
TFDeiTModel,
|
|
TFDeiTPreTrainedModel,
|
|
)
|
|
from .models.distilbert import (
|
|
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDistilBertForMaskedLM,
|
|
TFDistilBertForMultipleChoice,
|
|
TFDistilBertForQuestionAnswering,
|
|
TFDistilBertForSequenceClassification,
|
|
TFDistilBertForTokenClassification,
|
|
TFDistilBertMainLayer,
|
|
TFDistilBertModel,
|
|
TFDistilBertPreTrainedModel,
|
|
)
|
|
from .models.dpr import (
|
|
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFDPRContextEncoder,
|
|
TFDPRPretrainedContextEncoder,
|
|
TFDPRPretrainedQuestionEncoder,
|
|
TFDPRPretrainedReader,
|
|
TFDPRQuestionEncoder,
|
|
TFDPRReader,
|
|
)
|
|
from .models.electra import (
|
|
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFElectraForMaskedLM,
|
|
TFElectraForMultipleChoice,
|
|
TFElectraForPreTraining,
|
|
TFElectraForQuestionAnswering,
|
|
TFElectraForSequenceClassification,
|
|
TFElectraForTokenClassification,
|
|
TFElectraModel,
|
|
TFElectraPreTrainedModel,
|
|
)
|
|
from .models.encoder_decoder import TFEncoderDecoderModel
|
|
from .models.esm import (
|
|
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFEsmForMaskedLM,
|
|
TFEsmForSequenceClassification,
|
|
TFEsmForTokenClassification,
|
|
TFEsmModel,
|
|
TFEsmPreTrainedModel,
|
|
)
|
|
from .models.flaubert import (
|
|
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFFlaubertForMultipleChoice,
|
|
TFFlaubertForQuestionAnsweringSimple,
|
|
TFFlaubertForSequenceClassification,
|
|
TFFlaubertForTokenClassification,
|
|
TFFlaubertModel,
|
|
TFFlaubertPreTrainedModel,
|
|
TFFlaubertWithLMHeadModel,
|
|
)
|
|
from .models.funnel import (
|
|
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFFunnelBaseModel,
|
|
TFFunnelForMaskedLM,
|
|
TFFunnelForMultipleChoice,
|
|
TFFunnelForPreTraining,
|
|
TFFunnelForQuestionAnswering,
|
|
TFFunnelForSequenceClassification,
|
|
TFFunnelForTokenClassification,
|
|
TFFunnelModel,
|
|
TFFunnelPreTrainedModel,
|
|
)
|
|
from .models.gpt2 import (
|
|
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFGPT2DoubleHeadsModel,
|
|
TFGPT2ForSequenceClassification,
|
|
TFGPT2LMHeadModel,
|
|
TFGPT2MainLayer,
|
|
TFGPT2Model,
|
|
TFGPT2PreTrainedModel,
|
|
)
|
|
from .models.gptj import (
|
|
TFGPTJForCausalLM,
|
|
TFGPTJForQuestionAnswering,
|
|
TFGPTJForSequenceClassification,
|
|
TFGPTJModel,
|
|
TFGPTJPreTrainedModel,
|
|
)
|
|
from .models.groupvit import (
|
|
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFGroupViTModel,
|
|
TFGroupViTPreTrainedModel,
|
|
TFGroupViTTextModel,
|
|
TFGroupViTVisionModel,
|
|
)
|
|
from .models.hubert import (
|
|
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFHubertForCTC,
|
|
TFHubertModel,
|
|
TFHubertPreTrainedModel,
|
|
)
|
|
from .models.layoutlmv3 import (
|
|
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFLayoutLMv3ForQuestionAnswering,
|
|
TFLayoutLMv3ForSequenceClassification,
|
|
TFLayoutLMv3ForTokenClassification,
|
|
TFLayoutLMv3Model,
|
|
TFLayoutLMv3PreTrainedModel,
|
|
)
|
|
from .models.led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel
|
|
from .models.longformer import (
|
|
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFLongformerForMaskedLM,
|
|
TFLongformerForMultipleChoice,
|
|
TFLongformerForQuestionAnswering,
|
|
TFLongformerForSequenceClassification,
|
|
TFLongformerForTokenClassification,
|
|
TFLongformerModel,
|
|
TFLongformerPreTrainedModel,
|
|
TFLongformerSelfAttention,
|
|
)
|
|
from .models.lxmert import (
|
|
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFLxmertForPreTraining,
|
|
TFLxmertMainLayer,
|
|
TFLxmertModel,
|
|
TFLxmertPreTrainedModel,
|
|
TFLxmertVisualFeatureEncoder,
|
|
)
|
|
from .models.marian import TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel
|
|
from .models.mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
|
|
from .models.mobilebert import (
|
|
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFMobileBertForMaskedLM,
|
|
TFMobileBertForMultipleChoice,
|
|
TFMobileBertForNextSentencePrediction,
|
|
TFMobileBertForPreTraining,
|
|
TFMobileBertForQuestionAnswering,
|
|
TFMobileBertForSequenceClassification,
|
|
TFMobileBertForTokenClassification,
|
|
TFMobileBertMainLayer,
|
|
TFMobileBertModel,
|
|
TFMobileBertPreTrainedModel,
|
|
TFMobileViTForImageClassification,
|
|
TFMobileViTForSemanticSegmentation,
|
|
TFMobileViTModel,
|
|
TFMobileViTPreTrainedModel,
|
|
)
|
|
from .models.mpnet import (
|
|
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFMPNetForMaskedLM,
|
|
TFMPNetForMultipleChoice,
|
|
TFMPNetForQuestionAnswering,
|
|
TFMPNetForSequenceClassification,
|
|
TFMPNetForTokenClassification,
|
|
TFMPNetMainLayer,
|
|
TFMPNetModel,
|
|
TFMPNetPreTrainedModel,
|
|
)
|
|
from .models.mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model
|
|
from .models.openai import (
|
|
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFOpenAIGPTDoubleHeadsModel,
|
|
TFOpenAIGPTForSequenceClassification,
|
|
TFOpenAIGPTLMHeadModel,
|
|
TFOpenAIGPTMainLayer,
|
|
TFOpenAIGPTModel,
|
|
TFOpenAIGPTPreTrainedModel,
|
|
)
|
|
from .models.opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
|
|
from .models.pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel
|
|
from .models.rag import TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration
|
|
from .models.regnet import (
|
|
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFRegNetForImageClassification,
|
|
TFRegNetModel,
|
|
TFRegNetPreTrainedModel,
|
|
)
|
|
from .models.rembert import (
|
|
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFRemBertForCausalLM,
|
|
TFRemBertForMaskedLM,
|
|
TFRemBertForMultipleChoice,
|
|
TFRemBertForQuestionAnswering,
|
|
TFRemBertForSequenceClassification,
|
|
TFRemBertForTokenClassification,
|
|
TFRemBertLayer,
|
|
TFRemBertModel,
|
|
TFRemBertPreTrainedModel,
|
|
)
|
|
from .models.resnet import (
|
|
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFResNetForImageClassification,
|
|
TFResNetModel,
|
|
TFResNetPreTrainedModel,
|
|
)
|
|
from .models.roberta import (
|
|
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFRobertaForCausalLM,
|
|
TFRobertaForMaskedLM,
|
|
TFRobertaForMultipleChoice,
|
|
TFRobertaForQuestionAnswering,
|
|
TFRobertaForSequenceClassification,
|
|
TFRobertaForTokenClassification,
|
|
TFRobertaMainLayer,
|
|
TFRobertaModel,
|
|
TFRobertaPreTrainedModel,
|
|
)
|
|
from .models.roformer import (
|
|
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFRoFormerForCausalLM,
|
|
TFRoFormerForMaskedLM,
|
|
TFRoFormerForMultipleChoice,
|
|
TFRoFormerForQuestionAnswering,
|
|
TFRoFormerForSequenceClassification,
|
|
TFRoFormerForTokenClassification,
|
|
TFRoFormerLayer,
|
|
TFRoFormerModel,
|
|
TFRoFormerPreTrainedModel,
|
|
)
|
|
from .models.segformer import (
|
|
TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFSegformerDecodeHead,
|
|
TFSegformerForImageClassification,
|
|
TFSegformerForSemanticSegmentation,
|
|
TFSegformerModel,
|
|
TFSegformerPreTrainedModel,
|
|
)
|
|
from .models.speech_to_text import (
|
|
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFSpeech2TextForConditionalGeneration,
|
|
TFSpeech2TextModel,
|
|
TFSpeech2TextPreTrainedModel,
|
|
)
|
|
from .models.swin import (
|
|
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFSwinForImageClassification,
|
|
TFSwinForMaskedImageModeling,
|
|
TFSwinModel,
|
|
TFSwinPreTrainedModel,
|
|
)
|
|
from .models.t5 import (
|
|
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFT5EncoderModel,
|
|
TFT5ForConditionalGeneration,
|
|
TFT5Model,
|
|
TFT5PreTrainedModel,
|
|
)
|
|
from .models.tapas import (
|
|
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFTapasForMaskedLM,
|
|
TFTapasForQuestionAnswering,
|
|
TFTapasForSequenceClassification,
|
|
TFTapasModel,
|
|
TFTapasPreTrainedModel,
|
|
)
|
|
from .models.transfo_xl import (
|
|
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFAdaptiveEmbedding,
|
|
TFTransfoXLForSequenceClassification,
|
|
TFTransfoXLLMHeadModel,
|
|
TFTransfoXLMainLayer,
|
|
TFTransfoXLModel,
|
|
TFTransfoXLPreTrainedModel,
|
|
)
|
|
from .models.vision_encoder_decoder import TFVisionEncoderDecoderModel
|
|
from .models.vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
|
|
from .models.vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
|
|
from .models.wav2vec2 import (
|
|
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFWav2Vec2ForCTC,
|
|
TFWav2Vec2Model,
|
|
TFWav2Vec2PreTrainedModel,
|
|
)
|
|
from .models.whisper import (
|
|
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFWhisperForConditionalGeneration,
|
|
TFWhisperModel,
|
|
TFWhisperPreTrainedModel,
|
|
)
|
|
from .models.xglm import (
|
|
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFXGLMForCausalLM,
|
|
TFXGLMModel,
|
|
TFXGLMPreTrainedModel,
|
|
)
|
|
from .models.xlm import (
|
|
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFXLMForMultipleChoice,
|
|
TFXLMForQuestionAnsweringSimple,
|
|
TFXLMForSequenceClassification,
|
|
TFXLMForTokenClassification,
|
|
TFXLMMainLayer,
|
|
TFXLMModel,
|
|
TFXLMPreTrainedModel,
|
|
TFXLMWithLMHeadModel,
|
|
)
|
|
from .models.xlm_roberta import (
|
|
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFXLMRobertaForMaskedLM,
|
|
TFXLMRobertaForMultipleChoice,
|
|
TFXLMRobertaForQuestionAnswering,
|
|
TFXLMRobertaForSequenceClassification,
|
|
TFXLMRobertaForTokenClassification,
|
|
TFXLMRobertaModel,
|
|
)
|
|
from .models.xlnet import (
|
|
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
|
TFXLNetForMultipleChoice,
|
|
TFXLNetForQuestionAnsweringSimple,
|
|
TFXLNetForSequenceClassification,
|
|
TFXLNetForTokenClassification,
|
|
TFXLNetLMHeadModel,
|
|
TFXLNetMainLayer,
|
|
TFXLNetModel,
|
|
TFXLNetPreTrainedModel,
|
|
)
|
|
|
|
# Optimization
|
|
from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer
|
|
|
|
# Trainer
|
|
from .trainer_tf import TFTrainer
|
|
|
|
try:
|
|
if not is_flax_available():
|
|
raise OptionalDependencyNotAvailable()
|
|
except OptionalDependencyNotAvailable:
|
|
# Import the same objects as dummies to get them in the namespace.
|
|
# They will raise an import error if the user tries to instantiate / use them.
|
|
from .utils.dummy_flax_objects import *
|
|
else:
|
|
from .generation import (
|
|
FlaxForcedBOSTokenLogitsProcessor,
|
|
FlaxForcedEOSTokenLogitsProcessor,
|
|
FlaxGenerationMixin,
|
|
FlaxLogitsProcessor,
|
|
FlaxLogitsProcessorList,
|
|
FlaxLogitsWarper,
|
|
FlaxMinLengthLogitsProcessor,
|
|
FlaxTemperatureLogitsWarper,
|
|
FlaxTopKLogitsWarper,
|
|
FlaxTopPLogitsWarper,
|
|
)
|
|
from .modeling_flax_utils import FlaxPreTrainedModel
|
|
|
|
# Flax model imports
|
|
from .models.albert import (
|
|
FlaxAlbertForMaskedLM,
|
|
FlaxAlbertForMultipleChoice,
|
|
FlaxAlbertForPreTraining,
|
|
FlaxAlbertForQuestionAnswering,
|
|
FlaxAlbertForSequenceClassification,
|
|
FlaxAlbertForTokenClassification,
|
|
FlaxAlbertModel,
|
|
FlaxAlbertPreTrainedModel,
|
|
)
|
|
from .models.auto import (
|
|
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
|
|
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
|
|
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
|
|
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
|
|
FLAX_MODEL_FOR_PRETRAINING_MAPPING,
|
|
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
|
|
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
|
|
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
|
|
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
|
|
FLAX_MODEL_MAPPING,
|
|
FlaxAutoModel,
|
|
FlaxAutoModelForCausalLM,
|
|
FlaxAutoModelForImageClassification,
|
|
FlaxAutoModelForMaskedLM,
|
|
FlaxAutoModelForMultipleChoice,
|
|
FlaxAutoModelForNextSentencePrediction,
|
|
FlaxAutoModelForPreTraining,
|
|
FlaxAutoModelForQuestionAnswering,
|
|
FlaxAutoModelForSeq2SeqLM,
|
|
FlaxAutoModelForSequenceClassification,
|
|
FlaxAutoModelForTokenClassification,
|
|
FlaxAutoModelForVision2Seq,
|
|
)
|
|
from .models.bart import (
|
|
FlaxBartDecoderPreTrainedModel,
|
|
FlaxBartForCausalLM,
|
|
FlaxBartForConditionalGeneration,
|
|
FlaxBartForQuestionAnswering,
|
|
FlaxBartForSequenceClassification,
|
|
FlaxBartModel,
|
|
FlaxBartPreTrainedModel,
|
|
)
|
|
from .models.beit import (
|
|
FlaxBeitForImageClassification,
|
|
FlaxBeitForMaskedImageModeling,
|
|
FlaxBeitModel,
|
|
FlaxBeitPreTrainedModel,
|
|
)
|
|
from .models.bert import (
|
|
FlaxBertForCausalLM,
|
|
FlaxBertForMaskedLM,
|
|
FlaxBertForMultipleChoice,
|
|
FlaxBertForNextSentencePrediction,
|
|
FlaxBertForPreTraining,
|
|
FlaxBertForQuestionAnswering,
|
|
FlaxBertForSequenceClassification,
|
|
FlaxBertForTokenClassification,
|
|
FlaxBertModel,
|
|
FlaxBertPreTrainedModel,
|
|
)
|
|
from .models.big_bird import (
|
|
FlaxBigBirdForCausalLM,
|
|
FlaxBigBirdForMaskedLM,
|
|
FlaxBigBirdForMultipleChoice,
|
|
FlaxBigBirdForPreTraining,
|
|
FlaxBigBirdForQuestionAnswering,
|
|
FlaxBigBirdForSequenceClassification,
|
|
FlaxBigBirdForTokenClassification,
|
|
FlaxBigBirdModel,
|
|
FlaxBigBirdPreTrainedModel,
|
|
)
|
|
from .models.blenderbot import (
|
|
FlaxBlenderbotForConditionalGeneration,
|
|
FlaxBlenderbotModel,
|
|
FlaxBlenderbotPreTrainedModel,
|
|
)
|
|
from .models.blenderbot_small import (
|
|
FlaxBlenderbotSmallForConditionalGeneration,
|
|
FlaxBlenderbotSmallModel,
|
|
FlaxBlenderbotSmallPreTrainedModel,
|
|
)
|
|
from .models.clip import (
|
|
FlaxCLIPModel,
|
|
FlaxCLIPPreTrainedModel,
|
|
FlaxCLIPTextModel,
|
|
FlaxCLIPTextPreTrainedModel,
|
|
FlaxCLIPVisionModel,
|
|
FlaxCLIPVisionPreTrainedModel,
|
|
)
|
|
from .models.distilbert import (
|
|
FlaxDistilBertForMaskedLM,
|
|
FlaxDistilBertForMultipleChoice,
|
|
FlaxDistilBertForQuestionAnswering,
|
|
FlaxDistilBertForSequenceClassification,
|
|
FlaxDistilBertForTokenClassification,
|
|
FlaxDistilBertModel,
|
|
FlaxDistilBertPreTrainedModel,
|
|
)
|
|
from .models.electra import (
|
|
FlaxElectraForCausalLM,
|
|
FlaxElectraForMaskedLM,
|
|
FlaxElectraForMultipleChoice,
|
|
FlaxElectraForPreTraining,
|
|
FlaxElectraForQuestionAnswering,
|
|
FlaxElectraForSequenceClassification,
|
|
FlaxElectraForTokenClassification,
|
|
FlaxElectraModel,
|
|
FlaxElectraPreTrainedModel,
|
|
)
|
|
from .models.encoder_decoder import FlaxEncoderDecoderModel
|
|
from .models.gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel
|
|
from .models.gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
|
|
from .models.gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
|
|
from .models.longt5 import FlaxLongT5ForConditionalGeneration, FlaxLongT5Model, FlaxLongT5PreTrainedModel
|
|
from .models.marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel
|
|
from .models.mbart import (
|
|
FlaxMBartForConditionalGeneration,
|
|
FlaxMBartForQuestionAnswering,
|
|
FlaxMBartForSequenceClassification,
|
|
FlaxMBartModel,
|
|
FlaxMBartPreTrainedModel,
|
|
)
|
|
from .models.mt5 import FlaxMT5EncoderModel, FlaxMT5ForConditionalGeneration, FlaxMT5Model
|
|
from .models.opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
|
|
from .models.pegasus import FlaxPegasusForConditionalGeneration, FlaxPegasusModel, FlaxPegasusPreTrainedModel
|
|
from .models.roberta import (
|
|
FlaxRobertaForCausalLM,
|
|
FlaxRobertaForMaskedLM,
|
|
FlaxRobertaForMultipleChoice,
|
|
FlaxRobertaForQuestionAnswering,
|
|
FlaxRobertaForSequenceClassification,
|
|
FlaxRobertaForTokenClassification,
|
|
FlaxRobertaModel,
|
|
FlaxRobertaPreTrainedModel,
|
|
)
|
|
from .models.roformer import (
|
|
FlaxRoFormerForMaskedLM,
|
|
FlaxRoFormerForMultipleChoice,
|
|
FlaxRoFormerForQuestionAnswering,
|
|
FlaxRoFormerForSequenceClassification,
|
|
FlaxRoFormerForTokenClassification,
|
|
FlaxRoFormerModel,
|
|
FlaxRoFormerPreTrainedModel,
|
|
)
|
|
from .models.speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
|
|
from .models.t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel
|
|
from .models.vision_encoder_decoder import FlaxVisionEncoderDecoderModel
|
|
from .models.vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
|
|
from .models.vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
|
|
from .models.wav2vec2 import (
|
|
FlaxWav2Vec2ForCTC,
|
|
FlaxWav2Vec2ForPreTraining,
|
|
FlaxWav2Vec2Model,
|
|
FlaxWav2Vec2PreTrainedModel,
|
|
)
|
|
from .models.xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
|
|
from .models.xlm_roberta import (
|
|
FlaxXLMRobertaForMaskedLM,
|
|
FlaxXLMRobertaForMultipleChoice,
|
|
FlaxXLMRobertaForQuestionAnswering,
|
|
FlaxXLMRobertaForSequenceClassification,
|
|
FlaxXLMRobertaForTokenClassification,
|
|
FlaxXLMRobertaModel,
|
|
)
|
|
|
|
else:
|
|
import sys
|
|
|
|
sys.modules[__name__] = _LazyModule(
|
|
__name__,
|
|
globals()["__file__"],
|
|
_import_structure,
|
|
module_spec=__spec__,
|
|
extra_objects={"__version__": __version__},
|
|
)
|
|
|
|
|
|
if not is_tf_available() and not is_torch_available() and not is_flax_available():
|
|
logger.warning(
|
|
"None of PyTorch, TensorFlow >= 2.0, or Flax have been found. "
|
|
"Models won't be available and only tokenizers, configuration "
|
|
"and file/data utilities can be used."
|
|
)
|