mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00

This is the result of: $ black --line-length 119 examples templates transformers utils hubconf.py setup.py There's a lot of fairly long lines in the project. As a consequence, I'm picking the longest widely accepted line length, 119 characters. This is also Thomas' preference, because it allows for explicit variable names, to make the code easier to understand.
713 lines
30 KiB
Python
713 lines
30 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
|
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
|
|
using a masked language modeling (MLM) loss.
|
|
"""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import argparse
|
|
import glob
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import random
|
|
import re
|
|
import shutil
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
try:
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
except:
|
|
from tensorboardX import SummaryWriter
|
|
|
|
from tqdm import tqdm, trange
|
|
|
|
from transformers import (
|
|
WEIGHTS_NAME,
|
|
AdamW,
|
|
get_linear_schedule_with_warmup,
|
|
BertConfig,
|
|
BertForMaskedLM,
|
|
BertTokenizer,
|
|
GPT2Config,
|
|
GPT2LMHeadModel,
|
|
GPT2Tokenizer,
|
|
OpenAIGPTConfig,
|
|
OpenAIGPTLMHeadModel,
|
|
OpenAIGPTTokenizer,
|
|
RobertaConfig,
|
|
RobertaForMaskedLM,
|
|
RobertaTokenizer,
|
|
DistilBertConfig,
|
|
DistilBertForMaskedLM,
|
|
DistilBertTokenizer,
|
|
CamembertConfig,
|
|
CamembertForMaskedLM,
|
|
CamembertTokenizer,
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
MODEL_CLASSES = {
|
|
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
|
|
"openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
|
|
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
|
|
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
|
|
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
|
|
"camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer),
|
|
}
|
|
|
|
|
|
class TextDataset(Dataset):
|
|
def __init__(self, tokenizer, args, file_path="train", block_size=512):
|
|
assert os.path.isfile(file_path)
|
|
directory, filename = os.path.split(file_path)
|
|
cached_features_file = os.path.join(
|
|
directory, args.model_name_or_path + "_cached_lm_" + str(block_size) + "_" + filename
|
|
)
|
|
|
|
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
|
logger.info("Loading features from cached file %s", cached_features_file)
|
|
with open(cached_features_file, "rb") as handle:
|
|
self.examples = pickle.load(handle)
|
|
else:
|
|
logger.info("Creating features from dataset file at %s", directory)
|
|
|
|
self.examples = []
|
|
with open(file_path, encoding="utf-8") as f:
|
|
text = f.read()
|
|
|
|
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
|
|
|
|
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
|
|
self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
|
|
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
|
|
# If your dataset is small, first you should loook for a bigger one :-) and second you
|
|
# can change this behavior by adding (model specific) padding.
|
|
|
|
logger.info("Saving features into cached file %s", cached_features_file)
|
|
with open(cached_features_file, "wb") as handle:
|
|
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
def __len__(self):
|
|
return len(self.examples)
|
|
|
|
def __getitem__(self, item):
|
|
return torch.tensor(self.examples[item])
|
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, evaluate=False):
|
|
dataset = TextDataset(
|
|
tokenizer,
|
|
args,
|
|
file_path=args.eval_data_file if evaluate else args.train_data_file,
|
|
block_size=args.block_size,
|
|
)
|
|
return dataset
|
|
|
|
|
|
def set_seed(args):
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if args.n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
|
|
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
|
|
if not args.save_total_limit:
|
|
return
|
|
if args.save_total_limit <= 0:
|
|
return
|
|
|
|
# Check if we should delete older checkpoint(s)
|
|
glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
|
|
if len(glob_checkpoints) <= args.save_total_limit:
|
|
return
|
|
|
|
ordering_and_checkpoint_path = []
|
|
for path in glob_checkpoints:
|
|
if use_mtime:
|
|
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
|
|
else:
|
|
regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
|
|
if regex_match and regex_match.groups():
|
|
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
|
|
|
|
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
|
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
|
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
|
|
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
|
for checkpoint in checkpoints_to_be_deleted:
|
|
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
|
|
shutil.rmtree(checkpoint)
|
|
|
|
|
|
def mask_tokens(inputs, tokenizer, args):
|
|
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
|
|
labels = inputs.clone()
|
|
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
|
|
probability_matrix = torch.full(labels.shape, args.mlm_probability)
|
|
special_tokens_mask = [
|
|
tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
|
|
]
|
|
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
|
|
masked_indices = torch.bernoulli(probability_matrix).bool()
|
|
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
|
|
|
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
|
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
|
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
|
|
|
|
# 10% of the time, we replace masked input tokens with random word
|
|
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
|
|
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
|
|
inputs[indices_random] = random_words[indices_random]
|
|
|
|
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
|
return inputs, labels
|
|
|
|
|
|
def train(args, train_dataset, model, tokenizer):
|
|
""" Train the model """
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
if args.max_steps > 0:
|
|
t_total = args.max_steps
|
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
|
else:
|
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
|
|
# Prepare optimizer and schedule (linear warmup and decay)
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
|
|
]
|
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
|
scheduler = get_linear_schedule_with_warmup(
|
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
|
|
)
|
|
|
|
# Check if saved optimizer or scheduler states exist
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
|
|
os.path.join(args.model_name_or_path, "scheduler.pt")
|
|
):
|
|
# Load in optimizer and scheduler states
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
|
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
|
|
|
|
if args.fp16:
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
|
|
|
# multi-gpu training (should be after apex fp16 initialization)
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Distributed training (should be after apex fp16 initialization)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
|
)
|
|
|
|
# Train!
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_dataset))
|
|
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
|
logger.info(
|
|
" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
|
args.train_batch_size
|
|
* args.gradient_accumulation_steps
|
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
|
|
)
|
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
|
logger.info(" Total optimization steps = %d", t_total)
|
|
|
|
global_step = 0
|
|
epochs_trained = 0
|
|
steps_trained_in_current_epoch = 0
|
|
# Check if continuing training from a checkpoint
|
|
if os.path.exists(args.model_name_or_path):
|
|
# set global_step to gobal_step of last saved checkpoint from model path
|
|
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
|
|
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
|
|
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
|
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
|
logger.info(" Continuing training from epoch %d", epochs_trained)
|
|
logger.info(" Continuing training from global step %d", global_step)
|
|
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
|
|
|
|
tr_loss, logging_loss = 0.0, 0.0
|
|
|
|
model_to_resize = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training
|
|
model_to_resize.resize_token_embeddings(len(tokenizer))
|
|
|
|
model.zero_grad()
|
|
train_iterator = trange(
|
|
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
|
|
)
|
|
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
|
|
for _ in train_iterator:
|
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
|
for step, batch in enumerate(epoch_iterator):
|
|
|
|
# Skip past any already trained steps if resuming training
|
|
if steps_trained_in_current_epoch > 0:
|
|
steps_trained_in_current_epoch -= 1
|
|
continue
|
|
|
|
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
|
|
inputs = inputs.to(args.device)
|
|
labels = labels.to(args.device)
|
|
model.train()
|
|
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
|
|
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
|
|
|
|
if args.n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
|
|
if args.fp16:
|
|
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
loss.backward()
|
|
|
|
tr_loss += loss.item()
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16:
|
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
|
else:
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
|
optimizer.step()
|
|
scheduler.step() # Update learning rate schedule
|
|
model.zero_grad()
|
|
global_step += 1
|
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
|
# Log metrics
|
|
if (
|
|
args.local_rank == -1 and args.evaluate_during_training
|
|
): # Only evaluate when single GPU otherwise metrics may not average well
|
|
results = evaluate(args, model, tokenizer)
|
|
for key, value in results.items():
|
|
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
|
|
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
|
|
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
|
|
logging_loss = tr_loss
|
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
|
checkpoint_prefix = "checkpoint"
|
|
# Save model checkpoint
|
|
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(output_dir)
|
|
tokenizer.save_pretrained(output_dir)
|
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin"))
|
|
logger.info("Saving model checkpoint to %s", output_dir)
|
|
|
|
_rotate_checkpoints(args, checkpoint_prefix)
|
|
|
|
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
|
|
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
|
|
logger.info("Saving optimizer and scheduler states to %s", output_dir)
|
|
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
epoch_iterator.close()
|
|
break
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
train_iterator.close()
|
|
break
|
|
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer.close()
|
|
|
|
return global_step, tr_loss / global_step
|
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix=""):
|
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
|
eval_output_dir = args.output_dir
|
|
|
|
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
|
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
|
os.makedirs(eval_output_dir)
|
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
|
# Note that DistributedSampler samples randomly
|
|
eval_sampler = SequentialSampler(eval_dataset)
|
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
# multi-gpu evaluate
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Eval!
|
|
logger.info("***** Running evaluation {} *****".format(prefix))
|
|
logger.info(" Num examples = %d", len(eval_dataset))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
eval_loss = 0.0
|
|
nb_eval_steps = 0
|
|
model.eval()
|
|
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
|
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
|
|
inputs = inputs.to(args.device)
|
|
labels = labels.to(args.device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
|
|
lm_loss = outputs[0]
|
|
eval_loss += lm_loss.mean().item()
|
|
nb_eval_steps += 1
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
perplexity = torch.exp(torch.tensor(eval_loss))
|
|
|
|
result = {"perplexity": perplexity}
|
|
|
|
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results {} *****".format(prefix))
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
return result
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument(
|
|
"--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
|
|
## Other parameters
|
|
parser.add_argument(
|
|
"--eval_data_file",
|
|
default=None,
|
|
type=str,
|
|
help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
|
|
)
|
|
|
|
parser.add_argument("--model_type", default="bert", type=str, help="The model architecture to be fine-tuned.")
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
default="bert-base-cased",
|
|
type=str,
|
|
help="The model checkpoint for weights initialization.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
|
|
)
|
|
parser.add_argument(
|
|
"--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--config_name",
|
|
default="",
|
|
type=str,
|
|
help="Optional pretrained config name or path if not the same as model_name_or_path",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
default="",
|
|
type=str,
|
|
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
default="",
|
|
type=str,
|
|
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)",
|
|
)
|
|
parser.add_argument(
|
|
"--block_size",
|
|
default=-1,
|
|
type=int,
|
|
help="Optional input sequence length after tokenization."
|
|
"The training dataset will be truncated in block of this size for training."
|
|
"Default to the model max input length for single sentence inputs (take into account special tokens).",
|
|
)
|
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
|
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
|
|
parser.add_argument(
|
|
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
|
|
)
|
|
parser.add_argument(
|
|
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
|
|
)
|
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
|
|
parser.add_argument(
|
|
"--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
|
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument(
|
|
"--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
|
|
)
|
|
parser.add_argument(
|
|
"--max_steps",
|
|
default=-1,
|
|
type=int,
|
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
|
|
)
|
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
|
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
|
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
|
|
parser.add_argument(
|
|
"--save_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
|
|
)
|
|
parser.add_argument(
|
|
"--eval_all_checkpoints",
|
|
action="store_true",
|
|
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
|
|
)
|
|
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
|
|
parser.add_argument(
|
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
|
|
)
|
|
parser.add_argument(
|
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
|
|
|
parser.add_argument(
|
|
"--fp16",
|
|
action="store_true",
|
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
|
|
)
|
|
parser.add_argument(
|
|
"--fp16_opt_level",
|
|
type=str,
|
|
default="O1",
|
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
|
"See details at https://nvidia.github.io/apex/amp.html",
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
|
|
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
|
|
raise ValueError(
|
|
"BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
|
|
"flag (masked language modeling)."
|
|
)
|
|
if args.eval_data_file is None and args.do_eval:
|
|
raise ValueError(
|
|
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
|
|
"or remove the --do_eval argument."
|
|
)
|
|
|
|
if (
|
|
os.path.exists(args.output_dir)
|
|
and os.listdir(args.output_dir)
|
|
and args.do_train
|
|
and not args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
|
args.output_dir
|
|
)
|
|
)
|
|
|
|
# Setup distant debugging if needed
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
# Setup CUDA, GPU & distributed training
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
args.n_gpu = torch.cuda.device_count()
|
|
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
|
torch.cuda.set_device(args.local_rank)
|
|
device = torch.device("cuda", args.local_rank)
|
|
torch.distributed.init_process_group(backend="nccl")
|
|
args.n_gpu = 1
|
|
args.device = device
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
args.local_rank,
|
|
device,
|
|
args.n_gpu,
|
|
bool(args.local_rank != -1),
|
|
args.fp16,
|
|
)
|
|
|
|
# Set seed
|
|
set_seed(args)
|
|
|
|
# Load pretrained model and tokenizer
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
|
|
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
|
config = config_class.from_pretrained(
|
|
args.config_name if args.config_name else args.model_name_or_path,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
|
do_lower_case=args.do_lower_case,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
if args.block_size <= 0:
|
|
args.block_size = (
|
|
tokenizer.max_len_single_sentence
|
|
) # Our input block size will be the max possible for the model
|
|
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
|
|
model = model_class.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
model.to(args.device)
|
|
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
|
|
|
|
logger.info("Training/evaluation parameters %s", args)
|
|
|
|
# Training
|
|
if args.do_train:
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
|
|
|
|
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
|
|
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier()
|
|
|
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
|
|
|
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
# Create output directory if needed
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
|
os.makedirs(args.output_dir)
|
|
|
|
logger.info("Saving model checkpoint to %s", args.output_dir)
|
|
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
|
# They can then be reloaded using `from_pretrained()`
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(args.output_dir)
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
|
|
|
|
# Load a trained model and vocabulary that you have fine-tuned
|
|
model = model_class.from_pretrained(args.output_dir)
|
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
|
model.to(args.device)
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if args.do_eval and args.local_rank in [-1, 0]:
|
|
checkpoints = [args.output_dir]
|
|
if args.eval_all_checkpoints:
|
|
checkpoints = list(
|
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
|
|
)
|
|
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints)
|
|
for checkpoint in checkpoints:
|
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
|
|
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
|
|
|
|
model = model_class.from_pretrained(checkpoint)
|
|
model.to(args.device)
|
|
result = evaluate(args, model, tokenizer, prefix=prefix)
|
|
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
|
|
results.update(result)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|