mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-12 17:20:03 +06:00

This is the result of: $ black --line-length 119 examples templates transformers utils hubconf.py setup.py There's a lot of fairly long lines in the project. As a consequence, I'm picking the longest widely accepted line length, 119 characters. This is also Thomas' preference, because it allows for explicit variable names, to make the code easier to understand.
685 lines
29 KiB
Python
685 lines
29 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import argparse
|
|
import glob
|
|
import logging
|
|
import os
|
|
import random
|
|
import json
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
try:
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
except:
|
|
from tensorboardX import SummaryWriter
|
|
|
|
from tqdm import tqdm, trange
|
|
|
|
from transformers import (
|
|
WEIGHTS_NAME,
|
|
BertConfig,
|
|
BertForSequenceClassification,
|
|
BertTokenizer,
|
|
RobertaConfig,
|
|
RobertaForSequenceClassification,
|
|
RobertaTokenizer,
|
|
XLMConfig,
|
|
XLMForSequenceClassification,
|
|
XLMTokenizer,
|
|
XLNetConfig,
|
|
XLNetForSequenceClassification,
|
|
XLNetTokenizer,
|
|
DistilBertConfig,
|
|
DistilBertForSequenceClassification,
|
|
DistilBertTokenizer,
|
|
AlbertConfig,
|
|
AlbertForSequenceClassification,
|
|
AlbertTokenizer,
|
|
XLMRobertaConfig,
|
|
XLMRobertaForSequenceClassification,
|
|
XLMRobertaTokenizer,
|
|
)
|
|
|
|
from transformers import AdamW, get_linear_schedule_with_warmup
|
|
|
|
from transformers import glue_compute_metrics as compute_metrics
|
|
from transformers import glue_output_modes as output_modes
|
|
from transformers import glue_processors as processors
|
|
from transformers import glue_convert_examples_to_features as convert_examples_to_features
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
ALL_MODELS = sum(
|
|
(
|
|
tuple(conf.pretrained_config_archive_map.keys())
|
|
for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)
|
|
),
|
|
(),
|
|
)
|
|
|
|
MODEL_CLASSES = {
|
|
"bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
|
|
"xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
|
|
"xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
|
|
"roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
|
|
"distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
|
|
"albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
|
|
"xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
|
|
}
|
|
|
|
|
|
def set_seed(args):
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if args.n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
|
|
def train(args, train_dataset, model, tokenizer):
|
|
""" Train the model """
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
if args.max_steps > 0:
|
|
t_total = args.max_steps
|
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
|
else:
|
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
|
|
# Prepare optimizer and schedule (linear warmup and decay)
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
|
|
]
|
|
|
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
|
scheduler = get_linear_schedule_with_warmup(
|
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
|
|
)
|
|
|
|
# Check if saved optimizer or scheduler states exist
|
|
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
|
|
os.path.join(args.model_name_or_path, "scheduler.pt")
|
|
):
|
|
# Load in optimizer and scheduler states
|
|
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
|
|
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
|
|
|
|
if args.fp16:
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
|
|
|
# multi-gpu training (should be after apex fp16 initialization)
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Distributed training (should be after apex fp16 initialization)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(
|
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
|
|
)
|
|
|
|
# Train!
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_dataset))
|
|
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
|
logger.info(
|
|
" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
|
args.train_batch_size
|
|
* args.gradient_accumulation_steps
|
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
|
|
)
|
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
|
logger.info(" Total optimization steps = %d", t_total)
|
|
|
|
global_step = 0
|
|
epochs_trained = 0
|
|
steps_trained_in_current_epoch = 0
|
|
# Check if continuing training from a checkpoint
|
|
if os.path.exists(args.model_name_or_path):
|
|
# set global_step to gobal_step of last saved checkpoint from model path
|
|
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
|
|
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
|
|
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
|
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
|
logger.info(" Continuing training from epoch %d", epochs_trained)
|
|
logger.info(" Continuing training from global step %d", global_step)
|
|
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
|
|
|
|
tr_loss, logging_loss = 0.0, 0.0
|
|
model.zero_grad()
|
|
train_iterator = trange(
|
|
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
|
|
)
|
|
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
|
|
for _ in train_iterator:
|
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
|
for step, batch in enumerate(epoch_iterator):
|
|
|
|
# Skip past any already trained steps if resuming training
|
|
if steps_trained_in_current_epoch > 0:
|
|
steps_trained_in_current_epoch -= 1
|
|
continue
|
|
|
|
model.train()
|
|
batch = tuple(t.to(args.device) for t in batch)
|
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
|
|
if args.model_type != "distilbert":
|
|
inputs["token_type_ids"] = (
|
|
batch[2] if args.model_type in ["bert", "xlnet"] else None
|
|
) # XLM, DistilBERT and RoBERTa don't use segment_ids
|
|
outputs = model(**inputs)
|
|
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
|
|
|
|
if args.n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
|
|
if args.fp16:
|
|
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
loss.backward()
|
|
|
|
tr_loss += loss.item()
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16:
|
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
|
else:
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
scheduler.step() # Update learning rate schedule
|
|
model.zero_grad()
|
|
global_step += 1
|
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
|
logs = {}
|
|
if (
|
|
args.local_rank == -1 and args.evaluate_during_training
|
|
): # Only evaluate when single GPU otherwise metrics may not average well
|
|
results = evaluate(args, model, tokenizer)
|
|
for key, value in results.items():
|
|
eval_key = "eval_{}".format(key)
|
|
logs[eval_key] = value
|
|
|
|
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
|
|
learning_rate_scalar = scheduler.get_lr()[0]
|
|
logs["learning_rate"] = learning_rate_scalar
|
|
logs["loss"] = loss_scalar
|
|
logging_loss = tr_loss
|
|
|
|
for key, value in logs.items():
|
|
tb_writer.add_scalar(key, value, global_step)
|
|
print(json.dumps({**logs, **{"step": global_step}}))
|
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
|
# Save model checkpoint
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(output_dir)
|
|
tokenizer.save_pretrained(output_dir)
|
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin"))
|
|
logger.info("Saving model checkpoint to %s", output_dir)
|
|
|
|
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
|
|
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
|
|
logger.info("Saving optimizer and scheduler states to %s", output_dir)
|
|
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
epoch_iterator.close()
|
|
break
|
|
if args.max_steps > 0 and global_step > args.max_steps:
|
|
train_iterator.close()
|
|
break
|
|
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer.close()
|
|
|
|
return global_step, tr_loss / global_step
|
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix=""):
|
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
|
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
|
|
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
|
|
|
|
results = {}
|
|
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
|
|
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
|
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
|
os.makedirs(eval_output_dir)
|
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
|
# Note that DistributedSampler samples randomly
|
|
eval_sampler = SequentialSampler(eval_dataset)
|
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
|
|
|
# multi-gpu eval
|
|
if args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Eval!
|
|
logger.info("***** Running evaluation {} *****".format(prefix))
|
|
logger.info(" Num examples = %d", len(eval_dataset))
|
|
logger.info(" Batch size = %d", args.eval_batch_size)
|
|
eval_loss = 0.0
|
|
nb_eval_steps = 0
|
|
preds = None
|
|
out_label_ids = None
|
|
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
|
model.eval()
|
|
batch = tuple(t.to(args.device) for t in batch)
|
|
|
|
with torch.no_grad():
|
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
|
|
if args.model_type != "distilbert":
|
|
inputs["token_type_ids"] = (
|
|
batch[2] if args.model_type in ["bert", "xlnet"] else None
|
|
) # XLM, DistilBERT and RoBERTa don't use segment_ids
|
|
outputs = model(**inputs)
|
|
tmp_eval_loss, logits = outputs[:2]
|
|
|
|
eval_loss += tmp_eval_loss.mean().item()
|
|
nb_eval_steps += 1
|
|
if preds is None:
|
|
preds = logits.detach().cpu().numpy()
|
|
out_label_ids = inputs["labels"].detach().cpu().numpy()
|
|
else:
|
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
|
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
|
|
|
|
eval_loss = eval_loss / nb_eval_steps
|
|
if args.output_mode == "classification":
|
|
preds = np.argmax(preds, axis=1)
|
|
elif args.output_mode == "regression":
|
|
preds = np.squeeze(preds)
|
|
result = compute_metrics(eval_task, preds, out_label_ids)
|
|
results.update(result)
|
|
|
|
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results {} *****".format(prefix))
|
|
for key in sorted(result.keys()):
|
|
logger.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
return results
|
|
|
|
|
|
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
|
|
if args.local_rank not in [-1, 0] and not evaluate:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
|
|
|
processor = processors[task]()
|
|
output_mode = output_modes[task]
|
|
# Load data features from cache or dataset file
|
|
cached_features_file = os.path.join(
|
|
args.data_dir,
|
|
"cached_{}_{}_{}_{}".format(
|
|
"dev" if evaluate else "train",
|
|
list(filter(None, args.model_name_or_path.split("/"))).pop(),
|
|
str(args.max_seq_length),
|
|
str(task),
|
|
),
|
|
)
|
|
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
|
logger.info("Loading features from cached file %s", cached_features_file)
|
|
features = torch.load(cached_features_file)
|
|
else:
|
|
logger.info("Creating features from dataset file at %s", args.data_dir)
|
|
label_list = processor.get_labels()
|
|
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
|
|
# HACK(label indices are swapped in RoBERTa pretrained model)
|
|
label_list[1], label_list[2] = label_list[2], label_list[1]
|
|
examples = (
|
|
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
|
|
)
|
|
features = convert_examples_to_features(
|
|
examples,
|
|
tokenizer,
|
|
label_list=label_list,
|
|
max_length=args.max_seq_length,
|
|
output_mode=output_mode,
|
|
pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet
|
|
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
|
|
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
|
|
)
|
|
if args.local_rank in [-1, 0]:
|
|
logger.info("Saving features into cached file %s", cached_features_file)
|
|
torch.save(features, cached_features_file)
|
|
|
|
if args.local_rank == 0 and not evaluate:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
|
|
|
# Convert to Tensors and build dataset
|
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
|
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
|
|
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
|
|
if output_mode == "classification":
|
|
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
|
|
elif output_mode == "regression":
|
|
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
|
|
|
|
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
|
|
return dataset
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument(
|
|
"--data_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_type",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
|
|
)
|
|
parser.add_argument(
|
|
"--task_name",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
|
|
## Other parameters
|
|
parser.add_argument(
|
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
default="",
|
|
type=str,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
default="",
|
|
type=str,
|
|
help="Where do you want to store the pre-trained models downloaded from s3",
|
|
)
|
|
parser.add_argument(
|
|
"--max_seq_length",
|
|
default=128,
|
|
type=int,
|
|
help="The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded.",
|
|
)
|
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
|
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
|
|
parser.add_argument(
|
|
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
|
|
)
|
|
parser.add_argument(
|
|
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
|
|
)
|
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
|
|
parser.add_argument(
|
|
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
|
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument(
|
|
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
|
|
)
|
|
parser.add_argument(
|
|
"--max_steps",
|
|
default=-1,
|
|
type=int,
|
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
|
|
)
|
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
|
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
|
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
|
|
parser.add_argument(
|
|
"--eval_all_checkpoints",
|
|
action="store_true",
|
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
|
|
)
|
|
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
|
|
parser.add_argument(
|
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
|
|
)
|
|
parser.add_argument(
|
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
|
|
|
|
parser.add_argument(
|
|
"--fp16",
|
|
action="store_true",
|
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
|
|
)
|
|
parser.add_argument(
|
|
"--fp16_opt_level",
|
|
type=str,
|
|
default="O1",
|
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
|
"See details at https://nvidia.github.io/apex/amp.html",
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
|
|
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
if (
|
|
os.path.exists(args.output_dir)
|
|
and os.listdir(args.output_dir)
|
|
and args.do_train
|
|
and not args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
|
|
args.output_dir
|
|
)
|
|
)
|
|
|
|
# Setup distant debugging if needed
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
# Setup CUDA, GPU & distributed training
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
args.n_gpu = torch.cuda.device_count()
|
|
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
|
torch.cuda.set_device(args.local_rank)
|
|
device = torch.device("cuda", args.local_rank)
|
|
torch.distributed.init_process_group(backend="nccl")
|
|
args.n_gpu = 1
|
|
args.device = device
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
args.local_rank,
|
|
device,
|
|
args.n_gpu,
|
|
bool(args.local_rank != -1),
|
|
args.fp16,
|
|
)
|
|
|
|
# Set seed
|
|
set_seed(args)
|
|
|
|
# Prepare GLUE task
|
|
args.task_name = args.task_name.lower()
|
|
if args.task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (args.task_name))
|
|
processor = processors[args.task_name]()
|
|
args.output_mode = output_modes[args.task_name]
|
|
label_list = processor.get_labels()
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
|
|
|
args.model_type = args.model_type.lower()
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
|
config = config_class.from_pretrained(
|
|
args.config_name if args.config_name else args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
finetuning_task=args.task_name,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
|
|
do_lower_case=args.do_lower_case,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
model = model_class.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=args.cache_dir if args.cache_dir else None,
|
|
)
|
|
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
|
|
|
model.to(args.device)
|
|
|
|
logger.info("Training/evaluation parameters %s", args)
|
|
|
|
# Training
|
|
if args.do_train:
|
|
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
|
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
|
|
|
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
# Create output directory if needed
|
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
|
os.makedirs(args.output_dir)
|
|
|
|
logger.info("Saving model checkpoint to %s", args.output_dir)
|
|
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
|
# They can then be reloaded using `from_pretrained()`
|
|
model_to_save = (
|
|
model.module if hasattr(model, "module") else model
|
|
) # Take care of distributed/parallel training
|
|
model_to_save.save_pretrained(args.output_dir)
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
|
|
|
|
# Load a trained model and vocabulary that you have fine-tuned
|
|
model = model_class.from_pretrained(args.output_dir)
|
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
|
|
model.to(args.device)
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if args.do_eval and args.local_rank in [-1, 0]:
|
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
|
checkpoints = [args.output_dir]
|
|
if args.eval_all_checkpoints:
|
|
checkpoints = list(
|
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
|
|
)
|
|
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints)
|
|
for checkpoint in checkpoints:
|
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
|
|
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
|
|
|
|
model = model_class.from_pretrained(checkpoint)
|
|
model.to(args.device)
|
|
result = evaluate(args, model, tokenizer, prefix=prefix)
|
|
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
|
|
results.update(result)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|