mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 14:20:04 +06:00

This is the result of: $ black --line-length 119 examples templates transformers utils hubconf.py setup.py There's a lot of fairly long lines in the project. As a consequence, I'm picking the longest widely accepted line length, 119 characters. This is also Thomas' preference, because it allows for explicit variable names, to make the code easier to understand.
150 lines
5.3 KiB
Python
150 lines
5.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Dataset to distilled models
|
|
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
|
|
"""
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
import numpy as np
|
|
from utils import logger
|
|
|
|
|
|
class LmSeqsDataset(Dataset):
|
|
"""Custom Dataset wrapping language modeling sequences.
|
|
|
|
Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.
|
|
|
|
Input:
|
|
------
|
|
params: `NameSpace` parameters
|
|
data: `List[np.array[int]]
|
|
"""
|
|
|
|
def __init__(self, params, data):
|
|
self.params = params
|
|
|
|
self.token_ids = np.array(data)
|
|
self.lengths = np.array([len(t) for t in data])
|
|
|
|
self.check()
|
|
self.remove_long_sequences()
|
|
self.remove_empty_sequences()
|
|
self.check()
|
|
self.print_statistics()
|
|
|
|
def __getitem__(self, index):
|
|
return (self.token_ids[index], self.lengths[index])
|
|
|
|
def __len__(self):
|
|
return len(self.lengths)
|
|
|
|
def check(self):
|
|
"""
|
|
Some sanity checks
|
|
"""
|
|
assert len(self.token_ids) == len(self.lengths)
|
|
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
|
|
|
|
def remove_long_sequences(self):
|
|
"""
|
|
Sequences that are too long are splitted by chunk of max_model_input_size.
|
|
"""
|
|
max_len = self.params.max_model_input_size
|
|
indices = self.lengths > max_len
|
|
logger.info(f"Splitting {sum(indices)} too long sequences.")
|
|
|
|
def divide_chunks(l, n):
|
|
return [l[i : i + n] for i in range(0, len(l), n)]
|
|
|
|
new_tok_ids = []
|
|
new_lengths = []
|
|
if self.params.mlm:
|
|
cls_id, sep_id = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
|
|
else:
|
|
cls_id, sep_id = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
|
|
|
|
for seq_, len_ in zip(self.token_ids, self.lengths):
|
|
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
|
|
if len_ <= max_len:
|
|
new_tok_ids.append(seq_)
|
|
new_lengths.append(len_)
|
|
else:
|
|
sub_seqs = []
|
|
for sub_s in divide_chunks(seq_, max_len - 2):
|
|
if sub_s[0] != cls_id:
|
|
sub_s = np.insert(sub_s, 0, cls_id)
|
|
if sub_s[-1] != sep_id:
|
|
sub_s = np.insert(sub_s, len(sub_s), sep_id)
|
|
assert len(sub_s) <= max_len
|
|
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
|
|
sub_seqs.append(sub_s)
|
|
|
|
new_tok_ids.extend(sub_seqs)
|
|
new_lengths.extend([len(l) for l in sub_seqs])
|
|
|
|
self.token_ids = np.array(new_tok_ids)
|
|
self.lengths = np.array(new_lengths)
|
|
|
|
def remove_empty_sequences(self):
|
|
"""
|
|
Too short sequences are simply removed. This could be tunedd.
|
|
"""
|
|
init_size = len(self)
|
|
indices = self.lengths > 11
|
|
self.token_ids = self.token_ids[indices]
|
|
self.lengths = self.lengths[indices]
|
|
new_size = len(self)
|
|
logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences.")
|
|
|
|
def print_statistics(self):
|
|
"""
|
|
Print some statistics on the corpus. Only the master process.
|
|
"""
|
|
if not self.params.is_master:
|
|
return
|
|
logger.info(f"{len(self)} sequences")
|
|
# data_len = sum(self.lengths)
|
|
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
|
|
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
|
|
|
|
# unk_idx = self.params.special_tok_ids['unk_token']
|
|
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
|
|
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
|
|
|
|
def batch_sequences(self, batch):
|
|
"""
|
|
Do the padding and transform into torch.tensor.
|
|
"""
|
|
token_ids = [t[0] for t in batch]
|
|
lengths = [t[1] for t in batch]
|
|
assert len(token_ids) == len(lengths)
|
|
|
|
# Max for paddings
|
|
max_seq_len_ = max(lengths)
|
|
|
|
# Pad token ids
|
|
if self.params.mlm:
|
|
pad_idx = self.params.special_tok_ids["pad_token"]
|
|
else:
|
|
pad_idx = self.params.special_tok_ids["unk_token"]
|
|
tk_ = [list(t.astype(int)) + [pad_idx] * (max_seq_len_ - len(t)) for t in token_ids]
|
|
assert len(tk_) == len(token_ids)
|
|
assert all(len(t) == max_seq_len_ for t in tk_)
|
|
|
|
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
|
|
lg_t = torch.tensor(lengths) # (bs)
|
|
return tk_t, lg_t
|