mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 02:28:24 +06:00

This is the result of: $ black --line-length 119 examples templates transformers utils hubconf.py setup.py There's a lot of fairly long lines in the project. As a consequence, I'm picking the longest widely accepted line length, 119 characters. This is also Thomas' preference, because it allows for explicit variable names, to make the code easier to understand.
146 lines
6.3 KiB
Python
146 lines
6.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch Transformer XL model evaluation script.
|
|
Adapted from https://github.com/kimiyoung/transformer-xl.
|
|
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
|
|
|
|
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
|
|
"""
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import argparse
|
|
import logging
|
|
import time
|
|
import math
|
|
|
|
import torch
|
|
|
|
from transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model")
|
|
parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name")
|
|
parser.add_argument(
|
|
"--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate"
|
|
)
|
|
parser.add_argument("--batch_size", type=int, default=10, help="batch size")
|
|
parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict")
|
|
parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context")
|
|
parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads")
|
|
parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index")
|
|
parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available")
|
|
parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir")
|
|
parser.add_argument("--no_log", action="store_true", help="do not log the eval result")
|
|
parser.add_argument("--same_length", action="store_true", help="set same length attention with masking")
|
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
|
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
assert args.ext_len >= 0, "extended context length must be non-negative"
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
logger.info("device: {}".format(device))
|
|
|
|
# Load a pre-processed dataset
|
|
# You can also build the corpus yourself using TransfoXLCorpus methods
|
|
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
|
|
# and tokenizing the dataset
|
|
# The pre-processed corpus is a convertion (using the conversion script )
|
|
tokenizer = TransfoXLTokenizer.from_pretrained(args.model_name)
|
|
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
|
|
ntokens = len(corpus.vocab)
|
|
|
|
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
|
|
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
|
|
|
|
# Load a pre-trained model
|
|
model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
|
|
model = model.to(device)
|
|
|
|
logger.info(
|
|
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format(
|
|
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len
|
|
)
|
|
)
|
|
|
|
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
|
|
if args.clamp_len > 0:
|
|
model.clamp_len = args.clamp_len
|
|
if args.same_length:
|
|
model.same_length = True
|
|
|
|
###############################################################################
|
|
# Evaluation code
|
|
###############################################################################
|
|
def evaluate(eval_iter):
|
|
# Turn on evaluation mode which disables dropout.
|
|
model.eval()
|
|
total_len, total_loss = 0, 0.0
|
|
start_time = time.time()
|
|
with torch.no_grad():
|
|
mems = None
|
|
for idx, (data, target, seq_len) in enumerate(eval_iter):
|
|
ret = model(data, lm_labels=target, mems=mems)
|
|
loss, _, mems = ret
|
|
loss = loss.mean()
|
|
total_loss += seq_len * loss.item()
|
|
total_len += seq_len
|
|
total_time = time.time() - start_time
|
|
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
|
|
return total_loss / total_len
|
|
|
|
# Run on test data.
|
|
if args.split == "all":
|
|
test_loss = evaluate(te_iter)
|
|
valid_loss = evaluate(va_iter)
|
|
elif args.split == "valid":
|
|
valid_loss = evaluate(va_iter)
|
|
test_loss = None
|
|
elif args.split == "test":
|
|
test_loss = evaluate(te_iter)
|
|
valid_loss = None
|
|
|
|
def format_log(loss, split):
|
|
log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss))
|
|
return log_str
|
|
|
|
log_str = ""
|
|
if valid_loss is not None:
|
|
log_str += format_log(valid_loss, "valid")
|
|
if test_loss is not None:
|
|
log_str += format_log(test_loss, "test")
|
|
|
|
logger.info("=" * 100)
|
|
logger.info(log_str)
|
|
logger.info("=" * 100)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|