transformers/tests/test_modeling_encoder_decoder.py
Patrick von Platen fa49b9afea
Clean Encoder-Decoder models with Bart/T5-like API and add generate possibility (#3383)
* change encoder decoder style to bart & t5 style

* make encoder decoder generation dummy work for bert

* make style

* clean init config in encoder decoder

* add tests for encoder decoder models

* refactor and add last tests

* refactor and add last tests

* fix attn masks for bert encoder decoder

* make style

* refactor prepare inputs for Bert

* refactor

* finish encoder decoder

* correct typo

* add docstring to config

* finish

* add tests

* better naming

* make style

* fix flake8

* clean docstring

* make style

* rename
2020-04-28 15:11:09 +02:00

334 lines
13 KiB
Python

# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import is_torch_available
# TODO(PVP): this line reruns all the tests in BertModelTest; not sure whether this can be prevented
# for now only run module with pytest tests/test_modeling_encoder_decoder.py::EncoderDecoderModelTest
from .test_modeling_bert import BertModelTest
from .utils import require_torch, slow, torch_device
if is_torch_available():
from transformers import BertModel, BertForMaskedLM, EncoderDecoderModel
import numpy as np
import torch
@require_torch
class EncoderDecoderModelTest(unittest.TestCase):
def prepare_config_and_inputs_bert(self):
bert_model_tester = BertModelTest.BertModelTester(self)
encoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = encoder_config_and_inputs
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = decoder_config_and_inputs
return {
"config": config,
"input_ids": input_ids,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"encoder_hidden_states": encoder_hidden_states,
"lm_labels": decoder_token_labels,
"masked_lm_labels": decoder_token_labels,
}
def create_and_check_bert_encoder_decoder_model(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
encoder_outputs = (encoder_hidden_states,)
outputs_encoder_decoder = enc_dec_model(
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
def create_and_check_bert_encoder_decoder_model_from_pretrained(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
def create_and_check_save_and_load(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
EncoderDecoderModel.from_pretrained(tmpdirname)
after_outputs = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def create_and_check_save_and_load_encoder_decoder_model(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
EncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
)
after_outputs = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_loss_output(self, loss):
self.assertEqual(loss.size(), ())
def create_and_check_bert_encoder_decoder_model_mlm_labels(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
masked_lm_labels,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
masked_lm_labels=masked_lm_labels,
)
mlm_loss = outputs_encoder_decoder[0]
self.check_loss_output(mlm_loss)
# check that backprop works
mlm_loss.backward()
self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))
def create_and_check_bert_encoder_decoder_model_lm_labels(
self,
config,
input_ids,
attention_mask,
encoder_hidden_states,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
lm_labels,
**kwargs
):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
lm_labels=lm_labels,
)
lm_loss = outputs_encoder_decoder[0]
self.check_loss_output(lm_loss)
# check that backprop works
lm_loss.backward()
self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))
def create_and_check_bert_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
encoder_model = BertModel(config)
decoder_model = BertForMaskedLM(decoder_config)
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))
def test_bert_encoder_decoder_model(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_bert_encoder_decoder_model(**input_ids_dict)
def test_bert_encoder_decoder_model_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_bert_encoder_decoder_model_from_pretrained(**input_ids_dict)
def test_save_and_load_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_save_and_load(**input_ids_dict)
def test_save_and_load_from_encoder_decoder_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_save_and_load_encoder_decoder_model(**input_ids_dict)
def test_bert_encoder_decoder_model_mlm_labels(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_bert_encoder_decoder_model_mlm_labels(**input_ids_dict)
def test_bert_encoder_decoder_model_lm_labels(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_bert_encoder_decoder_model_lm_labels(**input_ids_dict)
def test_bert_encoder_decoder_model_generate(self):
input_ids_dict = self.prepare_config_and_inputs_bert()
self.create_and_check_bert_encoder_decoder_model_generate(**input_ids_dict)
@slow
def test_real_bert_model_from_pretrained(self):
model = EncoderDecoderModel.from_pretrained("bert-base-uncased", "bert-base-uncased")
self.assertIsNotNone(model)