mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00
4770 lines
228 KiB
Python
Executable File
4770 lines
228 KiB
Python
Executable File
# Copyright 2019 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import collections
|
|
import copy
|
|
import gc
|
|
import inspect
|
|
import math
|
|
import os
|
|
import os.path
|
|
import random
|
|
import re
|
|
import tempfile
|
|
import warnings
|
|
from collections import defaultdict
|
|
from contextlib import contextmanager
|
|
|
|
import numpy as np
|
|
from packaging import version
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForSequenceClassification,
|
|
DataCollatorWithFlattening,
|
|
PretrainedConfig,
|
|
PreTrainedModel,
|
|
is_torch_available,
|
|
logging,
|
|
set_seed,
|
|
)
|
|
from transformers.integrations import HfDeepSpeedConfig
|
|
from transformers.integrations.deepspeed import (
|
|
is_deepspeed_available,
|
|
is_deepspeed_zero3_enabled,
|
|
unset_hf_deepspeed_config,
|
|
)
|
|
from transformers.models.auto import get_values
|
|
from transformers.models.auto.modeling_auto import (
|
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
|
|
MODEL_FOR_BACKBONE_MAPPING_NAMES,
|
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
|
|
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
|
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES,
|
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
|
|
MODEL_FOR_MASKED_LM_MAPPING_NAMES,
|
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
|
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
|
|
MODEL_FOR_PRETRAINING_MAPPING_NAMES,
|
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
|
|
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
|
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
|
|
MODEL_MAPPING_NAMES,
|
|
)
|
|
from transformers.testing_utils import (
|
|
CaptureLogger,
|
|
backend_device_count,
|
|
backend_empty_cache,
|
|
backend_memory_allocated,
|
|
backend_torch_accelerator_module,
|
|
get_device_properties,
|
|
hub_retry,
|
|
is_flaky,
|
|
require_accelerate,
|
|
require_bitsandbytes,
|
|
require_deepspeed,
|
|
require_flash_attn,
|
|
require_non_hpu,
|
|
require_safetensors,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
require_torch_greater_or_equal,
|
|
require_torch_multi_accelerator,
|
|
require_torch_multi_gpu,
|
|
require_torch_sdpa,
|
|
run_first,
|
|
run_test_using_subprocess,
|
|
set_config_for_less_flaky_test,
|
|
set_model_for_less_flaky_test,
|
|
set_model_tester_for_less_flaky_test,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
CONFIG_NAME,
|
|
GENERATION_CONFIG_NAME,
|
|
SAFE_WEIGHTS_NAME,
|
|
is_accelerate_available,
|
|
is_torch_bf16_available_on_device,
|
|
is_torch_fp16_available_on_device,
|
|
is_torch_sdpa_available,
|
|
)
|
|
from transformers.utils.generic import ContextManagers
|
|
|
|
from .generation.test_utils import GenerationTesterMixin
|
|
|
|
|
|
if is_accelerate_available():
|
|
from accelerate.utils import compute_module_sizes
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from safetensors.torch import load_file as safe_load_file
|
|
from safetensors.torch import save_file as safe_save_file
|
|
from torch import nn
|
|
|
|
from transformers import MODEL_MAPPING
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_utils import load_state_dict, no_init_weights
|
|
from transformers.pytorch_utils import id_tensor_storage
|
|
|
|
from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
|
|
|
|
|
|
if is_deepspeed_available():
|
|
import deepspeed
|
|
|
|
|
|
# used in other test files e.g. when overwriting the test
|
|
TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION = [
|
|
(
|
|
# test name for the test runner
|
|
f"{dtype}_pad_{padding_side}{'' if use_attention_mask else '_no_attn_mask'}"
|
|
f"{'_sdpa_kernels' if enable_kernels else ''}",
|
|
# parameterization
|
|
*(dtype, padding_side, use_attention_mask, False, enable_kernels),
|
|
)
|
|
for dtype in ("fp16", "fp32", "bf16")
|
|
for padding_side in ("left", "right")
|
|
for use_attention_mask in (True, False)
|
|
for enable_kernels in (True, False)
|
|
# Extra test case: `output_attentions=True` has special attention mask handling and sdpa reverts to eager
|
|
] + [("fp32_pad_left_output_attentions", "fp32", "left", True, True, False)]
|
|
|
|
|
|
def _config_zero_init(config):
|
|
configs_no_init = copy.deepcopy(config)
|
|
for key in configs_no_init.__dict__.keys():
|
|
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
|
|
setattr(configs_no_init, key, 1e-10)
|
|
if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
|
|
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
|
|
setattr(configs_no_init, key, no_init_subconfig)
|
|
return configs_no_init
|
|
|
|
|
|
def _mock_init_weights(self, module):
|
|
for name, param in module.named_parameters(recurse=False):
|
|
# Use the first letter of the name to get a value and go from a <> -13 to z <> 12
|
|
value = ord(name[0].lower()) - 110
|
|
param.data.fill_(value)
|
|
|
|
|
|
def _mock_all_init_weights(self):
|
|
# Prune heads if needed
|
|
if self.config.pruned_heads:
|
|
self.prune_heads(self.config.pruned_heads)
|
|
|
|
import transformers.modeling_utils
|
|
|
|
if transformers.modeling_utils._init_weights:
|
|
for module in self.modules():
|
|
module._is_hf_initialized = False
|
|
# Initialize weights
|
|
self.apply(self._initialize_weights)
|
|
|
|
# Tie weights should be skipped when not initializing all weights
|
|
# since from_pretrained(...) calls tie weights anyways
|
|
self.tie_weights()
|
|
|
|
|
|
@contextmanager
|
|
def _deepspeed_zero3(ds_config):
|
|
dschf = HfDeepSpeedConfig(ds_config)
|
|
try:
|
|
yield dschf
|
|
finally:
|
|
unset_hf_deepspeed_config()
|
|
|
|
|
|
def sdpa_kernel(enable_flash, enable_math, enable_mem_efficient):
|
|
if version.parse(torch.__version__).release < version.parse("2.3").release:
|
|
return torch.backends.cuda.sdp_kernel(
|
|
enable_flash=enable_flash, enable_math=enable_math, enable_mem_efficient=enable_mem_efficient
|
|
)
|
|
|
|
backends = []
|
|
if enable_flash:
|
|
backends += [torch.nn.attention.SDPBackend.FLASH_ATTENTION]
|
|
if enable_math:
|
|
backends += [torch.nn.attention.SDPBackend.MATH]
|
|
if enable_mem_efficient:
|
|
backends += [torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION]
|
|
return torch.nn.attention.sdpa_kernel(backends)
|
|
|
|
|
|
@require_torch
|
|
class ModelTesterMixin:
|
|
model_tester = None
|
|
all_model_classes = ()
|
|
fx_compatible = False
|
|
test_torchscript = True
|
|
test_pruning = True
|
|
test_resize_embeddings = True
|
|
test_resize_position_embeddings = False
|
|
test_head_masking = True
|
|
test_mismatched_shapes = True
|
|
test_missing_keys = True
|
|
test_model_parallel = False
|
|
test_torch_exportable = False
|
|
# Used in `check_training_gradient_checkpointing` to NOT check all params having gradient (e.g. for some MOE models)
|
|
test_all_params_have_gradient = True
|
|
is_encoder_decoder = False
|
|
has_attentions = True
|
|
_is_composite = False
|
|
model_split_percents = [0.5, 0.7, 0.9]
|
|
|
|
# Note: for all mixins that utilize the Hub in some way, we should ensure that
|
|
# they contain the `hub_retry` decorator in case of failures.
|
|
def __init_subclass__(cls, **kwargs):
|
|
super().__init_subclass__(**kwargs)
|
|
for attr_name in dir(cls):
|
|
if attr_name.startswith("test_"):
|
|
attr = getattr(cls, attr_name)
|
|
if callable(attr):
|
|
setattr(cls, attr_name, hub_retry()(attr))
|
|
|
|
@property
|
|
def all_generative_model_classes(self):
|
|
return tuple(model_class for model_class in self.all_model_classes if model_class.can_generate())
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = copy.deepcopy(inputs_dict)
|
|
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
|
|
inputs_dict = {
|
|
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
|
|
if isinstance(v, torch.Tensor) and v.ndim > 1
|
|
else v
|
|
for k, v in inputs_dict.items()
|
|
}
|
|
elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
|
|
inputs_dict.pop("attention_mask")
|
|
elif model_class.__name__ == MODEL_FOR_PRETRAINING_MAPPING_NAMES["hiera"]:
|
|
config = self.model_tester.get_config()
|
|
mask_spatial_shape = [
|
|
i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
|
|
]
|
|
num_windows = math.prod(mask_spatial_shape)
|
|
torch.manual_seed(0)
|
|
inputs_dict["noise"] = torch.rand(self.model_tester.batch_size, num_windows)
|
|
|
|
if return_labels:
|
|
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
|
|
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
|
|
elif model_class.__name__ in [
|
|
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
|
|
]:
|
|
inputs_dict["start_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["end_positions"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class.__name__ in [
|
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class.__name__ in [
|
|
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
|
|
]:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
|
|
num_patches = self.model_tester.image_size // self.model_tester.patch_size
|
|
inputs_dict["bool_masked_pos"] = torch.zeros(
|
|
(self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
|
|
)
|
|
elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
|
|
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
|
|
inputs_dict["labels"] = torch.zeros(
|
|
[self.model_tester.batch_size, height, width], device=torch_device
|
|
).long()
|
|
|
|
return inputs_dict
|
|
|
|
def test_save_load(self):
|
|
def check_save_load(out1, out2):
|
|
# make sure we don't have nans
|
|
out_2 = out2.cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
out_2 = out_2[~np.isneginf(out_2)]
|
|
|
|
out_1 = out1.cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
out_1 = out_1[~np.isneginf(out_1)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# the config file (and the generation config file, if it can generate) should be saved
|
|
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
|
|
self.assertEqual(
|
|
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
|
|
)
|
|
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
model.to(torch_device)
|
|
with torch.no_grad():
|
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
# Save and load second time because `from_pretrained` adds a bunch of new config fields
|
|
# so we need to make sure those fields can be loaded back after saving
|
|
# Simply init as `model(config)` doesn't add those fields
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname)
|
|
|
|
if isinstance(first, tuple) and isinstance(second, tuple):
|
|
for tensor1, tensor2 in zip(first, second):
|
|
check_save_load(tensor1, tensor2)
|
|
else:
|
|
check_save_load(first, second)
|
|
|
|
def test_from_pretrained_no_checkpoint(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
state_dict = model.state_dict()
|
|
|
|
new_model = model_class.from_pretrained(
|
|
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
|
|
)
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
def test_keep_in_fp32_modules(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
if model_class._keep_in_fp32_modules is None:
|
|
self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
|
|
|
|
model = model_class(config)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)
|
|
|
|
for name, param in model.named_parameters():
|
|
if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
|
|
self.assertTrue(param.dtype == torch.float32)
|
|
else:
|
|
self.assertTrue(param.dtype == torch.float16, name)
|
|
|
|
def test_save_load_keys_to_ignore_on_save(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
_keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
|
|
if _keys_to_ignore_on_save is None:
|
|
continue
|
|
|
|
# check the keys are in the original state_dict
|
|
for k in _keys_to_ignore_on_save:
|
|
self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
|
|
|
|
# check that certain keys didn't get saved with the model
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
|
|
state_dict_saved = safe_load_file(output_model_file)
|
|
|
|
for k in _keys_to_ignore_on_save:
|
|
self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
|
|
|
|
# Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
|
|
load_result = model.load_state_dict(state_dict_saved, strict=False)
|
|
keys_to_ignore = set(model._keys_to_ignore_on_save)
|
|
|
|
if hasattr(model, "_tied_weights_keys"):
|
|
keys_to_ignore.update(set(model._tied_weights_keys))
|
|
|
|
self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
|
|
self.assertTrue(len(load_result.unexpected_keys) == 0)
|
|
|
|
def test_gradient_checkpointing_backward_compatibility(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
config.gradient_checkpointing = True
|
|
model = model_class(config)
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
def test_gradient_checkpointing_enable_disable(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
# at init model should have gradient checkpointing disabled
|
|
model = model_class(config)
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# check enable works
|
|
model.gradient_checkpointing_enable()
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
# Loop over all modules and check that relevant modules have gradient_checkpointing set to True
|
|
for n, m in model.named_modules():
|
|
if hasattr(m, "gradient_checkpointing"):
|
|
self.assertTrue(
|
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
|
|
)
|
|
|
|
# check disable works
|
|
model.gradient_checkpointing_disable()
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# Loop over all modules and check that relevant modules have gradient_checkpointing set to False
|
|
for n, m in model.named_modules():
|
|
if hasattr(m, "gradient_checkpointing"):
|
|
self.assertFalse(
|
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
|
|
)
|
|
|
|
def test_peft_gradient_checkpointing_enable_disable(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
|
|
# at init model should have gradient checkpointing disabled
|
|
model = model_class(config)
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# check enable works
|
|
model._hf_peft_config_loaded = True
|
|
try:
|
|
model.gradient_checkpointing_enable()
|
|
except NotImplementedError:
|
|
continue
|
|
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
# Loop over all modules and check that relevant modules have gradient_checkpointing set to True
|
|
for n, m in model.named_modules():
|
|
if hasattr(m, "gradient_checkpointing"):
|
|
self.assertTrue(
|
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
|
|
)
|
|
|
|
# check disable works
|
|
model.gradient_checkpointing_disable()
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# Loop over all modules and check that relevant modules have gradient_checkpointing set to False
|
|
for n, m in model.named_modules():
|
|
if hasattr(m, "gradient_checkpointing"):
|
|
self.assertFalse(
|
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
|
|
)
|
|
|
|
def test_can_init_all_missing_weights(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# This is used to get the addition year of the model
|
|
filename = inspect.getfile(config.__class__)
|
|
# No easy way to get model addition date -> check copyright year on top of file
|
|
with open(filename) as file:
|
|
source_code = file.read()
|
|
addition_year = 0 # if we cannot find it, set it to 0 (i.e. oldest)
|
|
if match_object := re.search(r"^# Copyright (\d{4})", source_code, re.MULTILINE | re.IGNORECASE):
|
|
addition_year = int(match_object.group(1))
|
|
|
|
for model_class in self.all_model_classes:
|
|
# For now, skip everything older than 2025 and "important models" (too much models to patch otherwise)
|
|
# Use `supports_cache_class` as a proxy to judge "important" models in order to prioritize them
|
|
# TODO: relax this as we patch more and more models
|
|
if addition_year < 2025 and not model_class._supports_cache_class:
|
|
self.skipTest(reason=f"{model_class} is not a priorited model for now.")
|
|
|
|
# Monkey patch the method to add a seed (we do it on PreTrainedModel._initialize_weights, which wraps
|
|
# `_init_weights` so that it can add the seed for composite models as well)
|
|
original_initialize_weights = PreTrainedModel._initialize_weights
|
|
|
|
def seeded_initialize_weights(self, module):
|
|
set_seed(0)
|
|
original_initialize_weights(self, module)
|
|
|
|
PreTrainedModel._initialize_weights = seeded_initialize_weights
|
|
|
|
# First, initialize the model from config -> this ensure everything is correctly initialized, even if
|
|
# _init_weights() does not take all weights into account correctly
|
|
model_from_config = model_class(config)
|
|
# Here, passing an empty state dict will force all weights to be moved from meta to cpu, then be initialized
|
|
# by _init_weights()
|
|
model_from_pretrained = model_class.from_pretrained(None, config=config, state_dict={})
|
|
|
|
# Back to original method to avoid issues if running several other tests
|
|
PreTrainedModel._initialize_weights = original_initialize_weights
|
|
|
|
# First, check if any parameters are still on meta -> this is usually an issue with tied weights
|
|
params_on_meta = []
|
|
for k, v in model_from_pretrained.named_parameters():
|
|
if v.device.type == "meta":
|
|
params_on_meta.append(k)
|
|
|
|
self.assertTrue(
|
|
len(params_on_meta) == 0,
|
|
f"The following keys are still on the meta device, it probably comes from an issue in the tied weights:\n{params_on_meta}",
|
|
)
|
|
|
|
# Everything must be exactly the same as we set the same seed for each init
|
|
different_weights = []
|
|
for (k1, v1), (k2, v2) in zip(
|
|
model_from_config.state_dict().items(), model_from_pretrained.state_dict().items()
|
|
):
|
|
self.assertEqual(k1, k2, "The keys from each model should be the same")
|
|
# Since we added the seed, they should be exactly the same (i.e. using allclose maybe be wrong due
|
|
# to very low std in init function)
|
|
if not (v1 == v2).all():
|
|
different_weights.append(k1)
|
|
|
|
# Buffers that are initialized randomly are ignored as they are not initialized on meta device anyway
|
|
buffer_names = {name for name, _ in model_from_config.named_buffers()}
|
|
different_weights = [k for k in different_weights if k not in buffer_names]
|
|
|
|
self.assertTrue(
|
|
len(different_weights) == 0,
|
|
f"The following keys are not properly handled by `_init_weights()`:\n{different_weights}",
|
|
)
|
|
|
|
def test_torch_save_load(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if config.__class__ not in MODEL_MAPPING:
|
|
self.skipTest(reason=f"{config.__class__.__name__} not in MODEL_MAPPING")
|
|
|
|
base_class = MODEL_MAPPING[config.__class__]
|
|
|
|
if isinstance(base_class, tuple):
|
|
base_class = base_class[0]
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class == base_class:
|
|
continue
|
|
|
|
# make a copy of model class to not break future tests
|
|
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
|
|
class CopyClass(base_class):
|
|
pass
|
|
|
|
base_class_copy = CopyClass
|
|
|
|
# make sure that all keys are expected for test
|
|
base_class_copy._keys_to_ignore_on_load_missing = []
|
|
|
|
# make init deterministic, but make sure that
|
|
# non-initialized weights throw errors nevertheless
|
|
base_class_copy._init_weights = _mock_init_weights
|
|
base_class_copy.init_weights = _mock_all_init_weights
|
|
|
|
model = model_class(config)
|
|
state_dict = model.state_dict()
|
|
|
|
def check_equal(loaded):
|
|
for key in state_dict.keys():
|
|
max_diff = torch.max(
|
|
state_dict()[key] ^ loaded[key]
|
|
if isinstance(state_dict[key], torch.BoolTensor)
|
|
else torch.abs(state_dict[key] - loaded[key])
|
|
).item()
|
|
self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")
|
|
|
|
# check that certain keys didn't get saved with the model
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
|
|
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
|
|
check_equal(load_state_dict(pt_checkpoint_path))
|
|
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
|
|
check_equal(load_state_dict(pt_checkpoint_path))
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
data = torch.flatten(param.data)
|
|
n_elements = torch.numel(data)
|
|
# skip 2.5% of elements on each side to avoid issues caused by `nn.init.trunc_normal_` described in
|
|
# https://github.com/huggingface/transformers/pull/27906#issuecomment-1846951332
|
|
n_elements_to_skip_on_each_side = int(n_elements * 0.025)
|
|
data_to_check = torch.sort(data).values
|
|
if n_elements_to_skip_on_each_side > 0:
|
|
data_to_check = data_to_check[n_elements_to_skip_on_each_side:-n_elements_to_skip_on_each_side]
|
|
self.assertIn(
|
|
((data_to_check.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_determinism(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_determinism(first, second):
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
out_1 = out_1[~np.isneginf(out_1)]
|
|
out_2 = out_2[~np.isneginf(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
if isinstance(first, tuple) and isinstance(second, tuple):
|
|
for tensor1, tensor2 in zip(first, second):
|
|
check_determinism(tensor1, tensor2)
|
|
else:
|
|
check_determinism(first, second)
|
|
|
|
def test_batching_equivalence(self, atol=1e-5, rtol=1e-5):
|
|
"""
|
|
Tests that the model supports batching and that the output is the nearly the same for the same input in
|
|
different batch sizes.
|
|
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
|
|
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
|
|
"""
|
|
|
|
def recursive_check(batched_object, single_row_object, model_name, key):
|
|
if isinstance(batched_object, (list, tuple)):
|
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
elif isinstance(batched_object, dict):
|
|
for batched_object_value, single_row_object_value in zip(
|
|
batched_object.values(), single_row_object.values()
|
|
):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
|
|
return
|
|
elif batched_object.dim() == 0:
|
|
return
|
|
# do not compare int or bool outputs as they are mostly computed with max/argmax/topk methods which are
|
|
# very sensitive to the inputs (e.g. tiny differences may give totally different results)
|
|
elif not torch.is_floating_point(batched_object):
|
|
return
|
|
else:
|
|
# indexing the first element does not always work
|
|
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
|
|
slice_ids = [slice(0, index) for index in single_row_object.shape]
|
|
batched_row = batched_object[slice_ids]
|
|
self.assertFalse(
|
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
|
|
)
|
|
try:
|
|
torch.testing.assert_close(batched_row, single_row_object, atol=atol, rtol=rtol)
|
|
except AssertionError as e:
|
|
msg = f"Batched and Single row outputs are not equal in {model_name} for key={key}.\n\n"
|
|
msg += str(e)
|
|
raise AssertionError(msg)
|
|
|
|
set_model_tester_for_less_flaky_test(self)
|
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
|
|
set_config_for_less_flaky_test(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
|
|
model_name = model_class.__name__
|
|
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
|
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
|
|
model = model_class(config).to(torch_device).eval()
|
|
set_model_for_less_flaky_test(model)
|
|
|
|
batch_size = self.model_tester.batch_size
|
|
single_row_input = {}
|
|
for key, value in batched_input_prepared.items():
|
|
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
|
|
# e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
|
|
single_batch_shape = value.shape[0] // batch_size
|
|
single_row_input[key] = value[:single_batch_shape]
|
|
else:
|
|
single_row_input[key] = value
|
|
|
|
with torch.no_grad():
|
|
model_batched_output = model(**batched_input_prepared)
|
|
model_row_output = model(**single_row_input)
|
|
|
|
if isinstance(model_batched_output, torch.Tensor):
|
|
model_batched_output = {"model_output": model_batched_output}
|
|
model_row_output = {"model_output": model_row_output}
|
|
|
|
for key in model_batched_output:
|
|
# DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
|
|
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
|
|
model_batched_output[key] = model_batched_output[key][1:]
|
|
model_row_output[key] = model_row_output[key][1:]
|
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
|
|
|
|
def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
|
|
if not self.model_tester.is_training:
|
|
self.skipTest(reason="ModelTester is not configured to run training tests")
|
|
|
|
for model_class in self.all_model_classes:
|
|
with self.subTest(model_class.__name__):
|
|
if (
|
|
model_class.__name__
|
|
in [
|
|
*get_values(MODEL_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
|
|
]
|
|
or not model_class.supports_gradient_checkpointing
|
|
):
|
|
# TODO (ydshieh): use `skipTest` once pytest-dev/pytest-subtests/pull/169 is merged
|
|
# self.skipTest(reason=f"`supports_gradient_checkpointing` is False for {model_class.__name__}.")
|
|
continue
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.use_cache = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
|
|
model.to(torch_device)
|
|
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
|
|
model.train()
|
|
|
|
# unfreeze additional layers
|
|
for p in model.parameters():
|
|
p.requires_grad_(True)
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if self.test_all_params_have_gradient:
|
|
for k, v in model.named_parameters():
|
|
if v.requires_grad:
|
|
self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
self.skipTest(reason="ModelTester is not configured to run training tests")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
if model_class.__name__ in [
|
|
*get_values(MODEL_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
|
|
]:
|
|
continue
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_causal_lm_can_accept_kwargs(self):
|
|
if not getattr(self.model_tester, "is_training", False):
|
|
self.skipTest(reason="ModelTester is not configured to run training tests")
|
|
|
|
valid_model_class = False
|
|
incompatible_models = (
|
|
"MusicgenForCausalLM",
|
|
"MusicgenMelodyForCausalLM",
|
|
"MllamaForCausalLM",
|
|
"CpmAntForCausalLM",
|
|
"GotOcr2ForConditionalGeneration",
|
|
)
|
|
for model_class in self.all_model_classes:
|
|
if (
|
|
model_class.__name__ in get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
|
|
and model_class.__name__ not in incompatible_models
|
|
):
|
|
valid_model_class = True
|
|
if not valid_model_class:
|
|
self.skipTest(reason="No causal lm model classes found")
|
|
for model_class in self.all_model_classes:
|
|
model_name = model_class.__name__
|
|
if model_name in get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) and model_name not in incompatible_models:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
with torch.device(torch_device):
|
|
model_eager = AutoModelForCausalLM.from_config(config, torch_dtype=torch.float32)
|
|
|
|
model_eager.save_pretrained(tmpdir)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
tmpdir, torch_dtype=torch.float32, device_map=torch_device
|
|
)
|
|
inputs_dict["num_items_in_batch"] = torch.tensor(inputs_dict["input_ids"].shape[0])
|
|
inputs_dict["labels"] = inputs_dict["input_ids"]
|
|
_ = model(**inputs_dict, return_dict=False)
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
# Scenario - 1 default behaviour
|
|
self.check_training_gradient_checkpointing()
|
|
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
# Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
|
|
# torch.utils.checkpoint.checkpoint
|
|
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})
|
|
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
# Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
|
|
# future releases: https://pytorch.org/docs/stable/checkpoint.html
|
|
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
|
|
|
|
def test_attention_outputs(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model does not output attentions")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
# force eager attention to support output attentions
|
|
config._attn_implementation = "eager"
|
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
|
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
|
|
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
|
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
|
|
chunk_length = getattr(self.model_tester, "chunk_length", None)
|
|
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
|
|
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
if chunk_length is not None:
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
|
|
)
|
|
else:
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
if self.is_encoder_decoder:
|
|
correct_outlen = 5
|
|
|
|
# loss is at first position
|
|
if "labels" in inputs_dict:
|
|
correct_outlen += 1 # loss is added to beginning
|
|
# Question Answering model returns start_logits and end_logits
|
|
if model_class.__name__ in [
|
|
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
|
|
]:
|
|
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
|
|
if "past_key_values" in outputs:
|
|
correct_outlen += 1 # past_key_values have been returned
|
|
|
|
self.assertEqual(out_len, correct_outlen)
|
|
|
|
# decoder attentions
|
|
decoder_attentions = outputs.decoder_attentions
|
|
self.assertIsInstance(decoder_attentions, (list, tuple))
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
|
|
)
|
|
|
|
# cross attentions
|
|
cross_attentions = outputs.cross_attentions
|
|
self.assertIsInstance(cross_attentions, (list, tuple))
|
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(cross_attentions[0].shape[-3:]),
|
|
[
|
|
self.model_tester.num_attention_heads,
|
|
decoder_seq_length,
|
|
encoder_key_length,
|
|
],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"):
|
|
added_hidden_states = self.model_tester.num_hidden_states_types
|
|
elif self.is_encoder_decoder:
|
|
added_hidden_states = 2
|
|
else:
|
|
added_hidden_states = 1
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
if chunk_length is not None:
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-4:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
|
|
)
|
|
else:
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
|
|
@slow
|
|
def test_torchscript_simple(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
@slow
|
|
def test_torchscript_output_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_attentions = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
@slow
|
|
def test_torchscript_output_hidden_state(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
self._create_and_check_torchscript(config, inputs_dict)
|
|
|
|
# This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
|
|
def clear_torch_jit_class_registry(self):
|
|
torch._C._jit_clear_class_registry()
|
|
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
|
|
# torch 1.8 has no `_clear_class_state` in `torch.jit._state`
|
|
if hasattr(torch.jit._state, "_clear_class_state"):
|
|
torch.jit._state._clear_class_state()
|
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
self.skipTest(reason="test_torchscript is set to `False`")
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
for model_class in self.all_model_classes:
|
|
for attn_implementation in ["eager", "sdpa"]:
|
|
if (
|
|
attn_implementation == "sdpa"
|
|
and (not model_class._supports_sdpa or not is_torch_sdpa_available())
|
|
or config.output_attentions
|
|
):
|
|
continue
|
|
|
|
configs_no_init._attn_implementation = attn_implementation
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
main_input_name = model_class.main_input_name
|
|
|
|
try:
|
|
if model.config.is_encoder_decoder:
|
|
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
|
|
main_input = inputs[main_input_name]
|
|
attention_mask = inputs["attention_mask"]
|
|
decoder_input_ids = inputs["decoder_input_ids"]
|
|
decoder_attention_mask = inputs["decoder_attention_mask"]
|
|
outputs = model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
|
|
# `torchscript` doesn't work with outputs containing `Cache` object. However, #35235 makes
|
|
# several models to use `Cache` by default instead of the legacy cache (tuple), and
|
|
# their `torchscript` tests are failing. We won't support them anyway, but we still want to keep
|
|
# the tests for encoder models like `BERT`. So we skip the checks if the model's output contains
|
|
# a `Cache` object.
|
|
if any(isinstance(x, Cache) for x in outputs):
|
|
continue
|
|
traced_model = torch.jit.trace(
|
|
model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
|
|
)
|
|
elif "bbox" in inputs and "image" in inputs: # LayoutLMv2 requires additional inputs
|
|
input_ids = inputs["input_ids"]
|
|
bbox = inputs["bbox"]
|
|
image = inputs["image"].tensor
|
|
outputs = model(input_ids, bbox, image)
|
|
if any(isinstance(x, Cache) for x in outputs):
|
|
continue
|
|
traced_model = torch.jit.trace(
|
|
model, (input_ids, bbox, image), check_trace=False
|
|
) # when traced model is checked, an error is produced due to name mangling
|
|
elif "bbox" in inputs: # Bros requires additional inputs (bbox)
|
|
input_ids = inputs["input_ids"]
|
|
bbox = inputs["bbox"]
|
|
outputs = model(input_ids, bbox)
|
|
if any(isinstance(x, Cache) for x in outputs):
|
|
continue
|
|
traced_model = torch.jit.trace(
|
|
model, (input_ids, bbox), check_trace=False
|
|
) # when traced model is checked, an error is produced due to name mangling
|
|
elif (
|
|
"pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
|
|
): # SegGpt requires additional inputs
|
|
pixel_values = inputs["pixel_values"]
|
|
prompt_pixel_values = inputs["prompt_pixel_values"]
|
|
prompt_masks = inputs["prompt_masks"]
|
|
outputs = model(pixel_values, prompt_pixel_values, prompt_masks)
|
|
if any(isinstance(x, Cache) for x in outputs):
|
|
continue
|
|
traced_model = torch.jit.trace(
|
|
model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
|
|
) # when traced model is checked, an error is produced due to name mangling
|
|
elif "Siglip2" in model_class.__name__:
|
|
outputs = model(**inputs)
|
|
example_inputs = [t for t in inputs.values() if isinstance(t, torch.Tensor)]
|
|
traced_model = torch.jit.trace(model, example_inputs, check_trace=False)
|
|
else:
|
|
main_input = inputs[main_input_name]
|
|
outputs = model(main_input)
|
|
if any(isinstance(x, Cache) for x in outputs):
|
|
continue
|
|
traced_model = torch.jit.trace(model, (main_input,))
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
non_persistent_buffers = {}
|
|
for key in loaded_model_state_dict.keys():
|
|
if key not in model_state_dict.keys():
|
|
non_persistent_buffers[key] = loaded_model_state_dict[key]
|
|
|
|
loaded_model_state_dict = {
|
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
|
|
}
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
if layer_name in loaded_model_state_dict:
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
|
|
# (Even with this call, there are still memory leak by ~0.04MB)
|
|
self.clear_torch_jit_class_registry()
|
|
|
|
def test_torch_fx(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torch_fx_tracing(config, inputs_dict)
|
|
|
|
def test_torch_fx_output_loss(self):
|
|
if self.all_model_classes[0].__name__ == "BloomModel":
|
|
self.skipTest(reason="Bloom currently has issues, @michaelbenayoun")
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)
|
|
|
|
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
|
|
if not self.fx_compatible:
|
|
self.skipTest(f"The model type {config.model_type} is not compatible with torch.fx")
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.return_dict = False
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
|
|
|
|
# We may want to test several inputs (various shapes, etc.).
|
|
inputs_to_test = [inputs]
|
|
|
|
if model.config.is_encoder_decoder:
|
|
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
|
|
labels = inputs.get("labels", None)
|
|
input_names = [
|
|
"attention_mask",
|
|
"decoder_attention_mask",
|
|
"decoder_input_ids",
|
|
"input_features",
|
|
"input_ids",
|
|
"input_values",
|
|
]
|
|
if labels is not None:
|
|
input_names.append("labels")
|
|
else:
|
|
input_names = [
|
|
"attention_mask",
|
|
"bbox",
|
|
"input_features",
|
|
"input_ids",
|
|
"input_values",
|
|
"inputs_embeds",
|
|
"pixel_values",
|
|
"pixel_values_videos",
|
|
"token_type_ids",
|
|
"visual_feats",
|
|
"visual_pos",
|
|
"noise",
|
|
]
|
|
|
|
labels = inputs.get("labels", None)
|
|
start_positions = inputs.get("start_positions", None)
|
|
end_positions = inputs.get("end_positions", None)
|
|
if labels is not None:
|
|
input_names.append("labels")
|
|
if start_positions is not None:
|
|
input_names.append("start_positions")
|
|
if end_positions is not None:
|
|
input_names.append("end_positions")
|
|
|
|
if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
|
|
input_names.append("past_key_values")
|
|
|
|
# Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
|
|
if "past_key_values" not in inputs:
|
|
batch_size = inputs[next(iter(inputs))].shape[0]
|
|
num_heads = model.config.num_attention_heads
|
|
head_dim = model.config.hidden_size // model.config.num_attention_heads
|
|
|
|
cache_shape = (batch_size, num_heads, 0, head_dim)
|
|
empty_pkv = tuple(
|
|
(
|
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
|
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
|
|
)
|
|
for i in range(model.config.num_hidden_layers)
|
|
)
|
|
empty_pkv = (
|
|
DynamicCache.from_legacy_cache(empty_pkv)
|
|
if model_class._supports_cache_class
|
|
else empty_pkv
|
|
)
|
|
|
|
cache_length = 9
|
|
cache_shape = (batch_size, num_heads, cache_length, head_dim)
|
|
non_empty_pkv = tuple(
|
|
(
|
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
|
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
|
|
)
|
|
for i in range(model.config.num_hidden_layers)
|
|
)
|
|
non_empty_pkv = (
|
|
DynamicCache.from_legacy_cache(non_empty_pkv)
|
|
if model_class._supports_cache_class
|
|
else non_empty_pkv
|
|
)
|
|
|
|
inps = copy.deepcopy(inputs_to_test[0])
|
|
|
|
inputs_to_test[0]["past_key_values"] = empty_pkv
|
|
|
|
inps["past_key_values"] = non_empty_pkv
|
|
inputs_to_test.append(inps)
|
|
|
|
past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
|
|
inputs_to_test[1]["attention_mask"] = torch.cat(
|
|
(past_mask, inputs_to_test[1]["attention_mask"]), dim=1
|
|
)
|
|
|
|
forward_parameters = inspect.signature(model.forward).parameters
|
|
if "input_ids" in forward_parameters and "inputs_embeds" in forward_parameters:
|
|
inps = copy.deepcopy(inputs_to_test[0])
|
|
|
|
embedding_size = (
|
|
model.config.embedding_size
|
|
if getattr(model.config, "embedding_size", None) is not None
|
|
and model.config.model_type != "megatron-bert"
|
|
else model.config.hidden_size
|
|
)
|
|
|
|
if (
|
|
model.config.model_type in MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
|
|
and model.__class__.__name__
|
|
== MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES[model.config.model_type]
|
|
):
|
|
batch_size, num_choices, sequence_length = inputs["input_ids"].shape
|
|
shape = (batch_size, num_choices, sequence_length, embedding_size)
|
|
elif inps["input_ids"].ndim == 2:
|
|
batch_size, sequence_length = inputs["input_ids"].shape
|
|
shape = (batch_size, sequence_length, embedding_size)
|
|
else:
|
|
self.skipTest("Unknown case")
|
|
|
|
del inps["input_ids"]
|
|
inps["inputs_embeds"] = torch.rand(shape, dtype=torch.float, device=torch_device)
|
|
inputs_to_test.append(inps)
|
|
|
|
for inps in inputs_to_test:
|
|
filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
|
|
input_names_to_trace = list(filtered_inputs.keys())
|
|
|
|
if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
|
|
not hasattr(model.config, "problem_type") or model.config.problem_type is None
|
|
):
|
|
model.config.problem_type = "single_label_classification"
|
|
|
|
model.config.use_cache = "past_key_values" in input_names_to_trace
|
|
|
|
traced_model = symbolic_trace(model, input_names_to_trace)
|
|
|
|
with torch.no_grad():
|
|
traced_output = traced_model(**filtered_inputs)
|
|
model_output = model(**filtered_inputs)
|
|
|
|
def flatten_output(output):
|
|
flatten = []
|
|
for x in output:
|
|
if isinstance(x, (tuple, list)):
|
|
flatten += flatten_output(x)
|
|
elif not isinstance(x, torch.Tensor):
|
|
continue
|
|
else:
|
|
flatten.append(x)
|
|
return flatten
|
|
|
|
model_output = flatten_output(model_output)
|
|
traced_output = flatten_output(traced_output)
|
|
num_outputs = len(model_output)
|
|
|
|
for i in range(num_outputs):
|
|
self.assertTrue(
|
|
torch.allclose(model_output[i], traced_output[i]),
|
|
f"traced {i}th output doesn't match model {i}th output for {model_class}",
|
|
)
|
|
|
|
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
|
|
# (Even with this call, there are still memory leak by ~0.04MB)
|
|
self.clear_torch_jit_class_registry()
|
|
|
|
def test_headmasking(self):
|
|
if not self.test_head_masking:
|
|
self.skipTest(reason="Model does not support head masking")
|
|
|
|
global_rng.seed(42)
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
global_rng.seed()
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = True
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init._attn_implementation = "eager" # head mask works only in eager mode and will be removed soon
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# Prepare head_mask
|
|
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
|
|
head_mask = torch.ones(
|
|
self.model_tester.num_hidden_layers,
|
|
self.model_tester.num_attention_heads,
|
|
device=torch_device,
|
|
)
|
|
head_mask[0, 0] = 0
|
|
head_mask[-1, :-1] = 0
|
|
head_mask.requires_grad_(requires_grad=True)
|
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy()
|
|
inputs["head_mask"] = head_mask
|
|
if model.config.is_encoder_decoder:
|
|
signature = inspect.signature(model.forward)
|
|
arg_names = [*signature.parameters.keys()]
|
|
if "decoder_head_mask" in arg_names: # necessary differentiation because of T5 model
|
|
inputs["decoder_head_mask"] = head_mask
|
|
if "cross_attn_head_mask" in arg_names:
|
|
inputs["cross_attn_head_mask"] = head_mask
|
|
outputs = model(**inputs, return_dict=True)
|
|
|
|
# Test that we can get a gradient back for importance score computation
|
|
output = sum(t.sum() for t in outputs[0])
|
|
output = output.sum()
|
|
output.backward()
|
|
multihead_outputs = head_mask.grad
|
|
|
|
self.assertIsNotNone(multihead_outputs)
|
|
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
|
|
|
|
def check_attentions_validity(attentions):
|
|
# Remove Nan
|
|
for t in attentions:
|
|
self.assertLess(
|
|
torch.sum(torch.isnan(t)), t.numel() / 4
|
|
) # Check we don't have more than 25% nans (arbitrary)
|
|
attentions = [
|
|
t.masked_fill(torch.isnan(t), 0.0) for t in attentions
|
|
] # remove them (the test is less complete)
|
|
|
|
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module
|
|
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
|
|
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
|
|
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
check_attentions_validity(outputs.encoder_attentions)
|
|
check_attentions_validity(outputs.decoder_attentions)
|
|
check_attentions_validity(outputs.cross_attentions)
|
|
else:
|
|
check_attentions_validity(outputs.attentions)
|
|
|
|
def test_head_pruning(self):
|
|
if not self.test_pruning:
|
|
self.skipTest(reason="Pruning is not activated")
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
model.prune_heads(heads_to_prune)
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
|
|
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_pretrained(self):
|
|
if not self.test_pruning:
|
|
self.skipTest(reason="Pruning is not activated")
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
|
|
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_save_load_from_config_init(self):
|
|
if not self.test_pruning:
|
|
self.skipTest(reason="Pruning is not activated")
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {
|
|
0: list(range(1, self.model_tester.num_attention_heads)),
|
|
-1: [0],
|
|
}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], 1)
|
|
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
|
|
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
|
|
def test_head_pruning_integration(self):
|
|
if not self.test_pruning:
|
|
self.skipTest(reason="Pruning is not activated")
|
|
|
|
for model_class in self.all_model_classes:
|
|
(
|
|
config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if "head_mask" in inputs_dict:
|
|
del inputs_dict["head_mask"]
|
|
|
|
inputs_dict["output_attentions"] = True
|
|
config.output_hidden_states = False
|
|
|
|
heads_to_prune = {1: [1, 2]}
|
|
config.pruned_heads = heads_to_prune
|
|
|
|
model = model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.save_pretrained(temp_dir_name)
|
|
model = model_class.from_pretrained(temp_dir_name)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
|
|
heads_to_prune = {0: [0], 1: [1, 2]}
|
|
model.prune_heads(heads_to_prune)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs[-1]
|
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
|
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
|
|
|
|
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"):
|
|
seq_length = self.model_tester.encoder_seq_length
|
|
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
|
|
seq_length = seq_length * self.model_tester.chunk_length
|
|
else:
|
|
seq_length = self.model_tester.seq_length
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
if config.is_encoder_decoder:
|
|
hidden_states = outputs.decoder_hidden_states
|
|
|
|
self.assertIsInstance(hidden_states, (list, tuple))
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[decoder_seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.output_hidden_states = True
|
|
config.output_attentions = self.has_attentions
|
|
|
|
# force eager attention to support output attentions
|
|
if self.has_attentions:
|
|
config._attn_implementation = "eager"
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
model.to(torch_device)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
outputs = model(**inputs)
|
|
|
|
output = outputs[0]
|
|
|
|
if config.is_encoder_decoder:
|
|
# Seq2Seq models
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0]
|
|
encoder_hidden_states.retain_grad()
|
|
|
|
decoder_hidden_states = outputs.decoder_hidden_states[0]
|
|
decoder_hidden_states.retain_grad()
|
|
|
|
if self.has_attentions:
|
|
encoder_attentions = outputs.encoder_attentions[0]
|
|
encoder_attentions.retain_grad()
|
|
|
|
decoder_attentions = outputs.decoder_attentions[0]
|
|
decoder_attentions.retain_grad()
|
|
|
|
cross_attentions = outputs.cross_attentions[0]
|
|
cross_attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad)
|
|
self.assertIsNotNone(decoder_hidden_states.grad)
|
|
|
|
if self.has_attentions:
|
|
self.assertIsNotNone(encoder_attentions.grad)
|
|
self.assertIsNotNone(decoder_attentions.grad)
|
|
self.assertIsNotNone(cross_attentions.grad)
|
|
else:
|
|
# Encoder-/Decoder-only models
|
|
hidden_states = outputs.hidden_states[0]
|
|
hidden_states.retain_grad()
|
|
|
|
if self.has_attentions:
|
|
attentions = outputs.attentions[0]
|
|
attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(hidden_states.grad)
|
|
|
|
if self.has_attentions:
|
|
self.assertIsNotNone(attentions.grad)
|
|
|
|
def test_feed_forward_chunking(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
torch.manual_seed(0)
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
|
|
torch.manual_seed(0)
|
|
config.chunk_size_feed_forward = 1
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
|
|
torch.testing.assert_close(hidden_states_no_chunk, hidden_states_with_chunk, rtol=1e-3, atol=1e-3)
|
|
|
|
def test_resize_position_vector_embeddings(self):
|
|
if not self.test_resize_position_embeddings:
|
|
self.skipTest(reason="Model does not have position embeddings")
|
|
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
max_position_embeddings = config.max_position_embeddings
|
|
|
|
# Retrieve the embeddings and clone theme
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
encoder_cloned_embeddings = encoder_model_embed.weight.clone()
|
|
decoder_cloned_embeddings = decoder_model_embed.weight.clone()
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the position embeddings with a larger max_position_embeddings increases
|
|
# the model's position embeddings size
|
|
model.resize_position_embeddings(max_position_embeddings + 10)
|
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)
|
|
|
|
# Check that it actually resizes the embeddings matrix
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
|
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the position embeddings with a smaller max_position_embeddings decreases
|
|
# the model's max_position_embeddings
|
|
model.resize_position_embeddings(max_position_embeddings - 5)
|
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)
|
|
|
|
# Check that it actually resizes the embeddings matrix
|
|
if model.config.is_encoder_decoder:
|
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
|
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
|
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
|
|
else:
|
|
model_embed = model.get_position_embeddings()
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
|
|
if model.config.is_encoder_decoder:
|
|
for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
else:
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_resize_tokens_embeddings(self):
|
|
if not self.test_resize_embeddings:
|
|
self.skipTest(reason="test_resize_embeddings is set to `False`")
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
inputs_dict.pop("labels", None)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.Init():
|
|
model = model_class(config)
|
|
else:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_embed_pre_resize = model.get_input_embeddings()
|
|
type_model_embed_pre_resize = type(model_embed_pre_resize)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
model_vocab_size = config.get_text_config().vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check to make sure the type of embeddings returned post resizing is same as type of input
|
|
type_model_embed_post_resize = type(model_embed)
|
|
self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
|
|
# Check that added embeddings mean is close to the old embeddings mean
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None):
|
|
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
|
|
else:
|
|
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
|
|
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
if not is_deepspeed_zero3_enabled():
|
|
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
|
|
model_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
model(**model_inputs)
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
|
|
# make sure that decoder_input_ids are resized as well
|
|
if not is_deepspeed_zero3_enabled():
|
|
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
model_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
model(**model_inputs)
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
del model
|
|
del config
|
|
# Copy again. config changed with embedding resizing (`vocab_size` changed)
|
|
config = copy.deepcopy(original_config)
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.Init():
|
|
model = model_class(config)
|
|
else:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_vocab_size = config.get_text_config().vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
|
|
self.assertTrue(new_model_vocab_size, model.vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
|
|
target_dimension = 128
|
|
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0], target_dimension)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
|
|
):
|
|
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
|
|
|
|
# Test when `vocab_size` is smaller than `hidden_size`.
|
|
del model
|
|
del config
|
|
# Copy again. config changed with embedding resizing (`vocab_size` changed)
|
|
config = copy.deepcopy(original_config)
|
|
config.vocab_size = 4
|
|
config.pad_token_id = 3
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.Init():
|
|
model = model_class(config)
|
|
else:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_vocab_size = config.get_text_config().vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check to make sure the type of embeddings returned post resizing is same as type of input
|
|
type_model_embed_post_resize = type(model_embed)
|
|
self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
|
|
# Check that added embeddings mean is close to the old embeddings mean
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None):
|
|
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
|
|
else:
|
|
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
|
|
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
|
|
|
|
@require_deepspeed
|
|
@require_torch_accelerator
|
|
def test_resize_tokens_embeddings_with_deepspeed(self):
|
|
ds_config = {
|
|
"zero_optimization": {
|
|
"stage": 3,
|
|
"offload_param": {"device": "cpu", "pin_memory": True},
|
|
},
|
|
}
|
|
with _deepspeed_zero3(ds_config):
|
|
self.test_resize_tokens_embeddings()
|
|
|
|
@require_deepspeed
|
|
@require_torch_multi_accelerator
|
|
def test_resize_tokens_embeddings_with_deepspeed_multi_gpu(self):
|
|
ds_config = {
|
|
"zero_optimization": {
|
|
"stage": 3,
|
|
},
|
|
}
|
|
with _deepspeed_zero3(ds_config):
|
|
self.test_resize_tokens_embeddings()
|
|
|
|
def test_resize_embeddings_untied(self):
|
|
if not self.test_resize_embeddings:
|
|
self.skipTest(reason="test_resize_embeddings is set to `False`")
|
|
|
|
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
original_config.tie_word_embeddings = False
|
|
inputs_dict.pop("labels", None)
|
|
|
|
# if model cannot untied embeddings -> leave test
|
|
if original_config.tie_word_embeddings:
|
|
self.skipTest(reason="Model cannot untied embeddings")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.Init():
|
|
model = model_class(config)
|
|
else:
|
|
model = model_class(config).to(torch_device)
|
|
|
|
# if no output embeddings -> leave test
|
|
if model.get_output_embeddings() is None:
|
|
continue
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_vocab_size = config.get_text_config().vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
if not is_deepspeed_zero3_enabled():
|
|
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Test multivariate resizing.
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
# Check that added embeddings mean is close to the old embeddings mean
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.GatheredParameters(output_embeds.weight, modifier_rank=None):
|
|
old_embeddings_mean = torch.mean(output_embeds.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(output_embeds.weight.data[-10:, :], axis=0)
|
|
else:
|
|
old_embeddings_mean = torch.mean(output_embeds.weight.data[:-10, :], axis=0)
|
|
new_embeddings_mean = torch.mean(output_embeds.weight.data[-10:, :], axis=0)
|
|
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
|
|
# check if the old bias mean close to added bias mean.
|
|
if output_embeds.bias is not None:
|
|
if is_deepspeed_zero3_enabled():
|
|
with deepspeed.zero.GatheredParameters(output_embeds.bias, modifier_rank=None):
|
|
old_bias_mean = torch.mean(output_embeds.bias.data[:-10], axis=0)
|
|
new_bias_mean = torch.mean(output_embeds.bias.data[-10:], axis=0)
|
|
else:
|
|
old_bias_mean = torch.mean(output_embeds.bias.data[:-10], axis=0)
|
|
new_bias_mean = torch.mean(output_embeds.bias.data[-10:], axis=0)
|
|
|
|
torch.testing.assert_close(old_bias_mean, new_bias_mean, rtol=1e-5, atol=1e-5)
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model.resize_token_embeddings(model_vocab_size - 15)
|
|
new_model_vocab_size = model.config.get_text_config().vocab_size
|
|
self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
if not is_deepspeed_zero3_enabled():
|
|
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
@require_deepspeed
|
|
@require_torch_accelerator
|
|
def test_resize_embeddings_untied_with_deepspeed(self):
|
|
ds_config = {
|
|
"zero_optimization": {
|
|
"stage": 3,
|
|
"offload_param": {"device": "cpu", "pin_memory": True},
|
|
},
|
|
}
|
|
with _deepspeed_zero3(ds_config):
|
|
self.test_resize_embeddings_untied()
|
|
|
|
@require_deepspeed
|
|
@require_torch_multi_accelerator
|
|
def test_resize_embeddings_untied_with_deepspeed_multi_gpu(self):
|
|
ds_config = {
|
|
"zero_optimization": {
|
|
"stage": 3,
|
|
},
|
|
}
|
|
with _deepspeed_zero3(ds_config):
|
|
self.test_resize_embeddings_untied()
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), nn.Embedding)
|
|
|
|
new_input_embedding_layer = nn.Embedding(10, 10)
|
|
model.set_input_embeddings(new_input_embedding_layer)
|
|
self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)
|
|
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model_main_input_name(self):
|
|
for model_class in self.all_model_classes:
|
|
model_signature = inspect.signature(getattr(model_class, "forward"))
|
|
# The main input is the name of the argument after `self`
|
|
observed_main_input_name = list(model_signature.parameters.keys())[1]
|
|
self.assertEqual(model_class.main_input_name, observed_main_input_name)
|
|
|
|
def test_correct_missing_keys(self):
|
|
if not self.test_missing_keys:
|
|
self.skipTest(reason="test_missing_keys is set to `False`")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
base_model_prefix = model.base_model_prefix
|
|
|
|
if hasattr(model, base_model_prefix):
|
|
extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
|
|
extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
|
|
# Some models define this as None
|
|
if model._keys_to_ignore_on_load_missing:
|
|
for key in model._keys_to_ignore_on_load_missing:
|
|
extra_params.pop(key, None)
|
|
|
|
if not extra_params:
|
|
# In that case, we *are* on a head model, but every
|
|
# single key is not actual parameters and this is
|
|
# tested in `test_tied_model_weights_key_ignore` test.
|
|
continue
|
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name:
|
|
model.base_model.save_pretrained(temp_dir_name)
|
|
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
|
|
self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
|
|
|
|
def test_tie_model_weights(self):
|
|
if not self.test_torchscript:
|
|
self.skipTest(reason="test_torchscript is set to `False`")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_same_values(layer_1, layer_2):
|
|
equal = True
|
|
for p1, p2 in zip(layer_1.weight, layer_2.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
equal = False
|
|
return equal
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.torchscript = True
|
|
model_not_tied = model_class(config)
|
|
if model_not_tied.get_output_embeddings() is None:
|
|
continue
|
|
|
|
config_tied = copy.deepcopy(config)
|
|
config_tied.torchscript = False
|
|
model_tied = model_class(config_tied)
|
|
params_tied = list(model_tied.parameters())
|
|
# Check that the embedding layer and decoding layer are the same in size and in value
|
|
# self.assertTrue(check_same_values(embeddings, decoding))
|
|
|
|
# Check that after resize they remain tied.
|
|
vocab_size = config.get_text_config().vocab_size
|
|
model_tied.resize_token_embeddings(vocab_size + 10)
|
|
params_tied_2 = list(model_tied.parameters())
|
|
self.assertEqual(len(params_tied_2), len(params_tied))
|
|
|
|
@require_safetensors
|
|
def test_can_use_safetensors(self):
|
|
for model_class in self.all_model_classes:
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model_tied = model_class(config)
|
|
with tempfile.TemporaryDirectory() as d:
|
|
try:
|
|
model_tied.save_pretrained(d, safe_serialization=True)
|
|
except Exception as e:
|
|
raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")
|
|
|
|
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
|
|
# Checking the state dicts are correct
|
|
reloaded_state = model_reloaded.state_dict()
|
|
for k, v in model_tied.state_dict().items():
|
|
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
|
|
torch.testing.assert_close(
|
|
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
|
|
)
|
|
# Checking there was no complain of missing weights
|
|
self.assertEqual(infos["missing_keys"], [])
|
|
|
|
# Checking the tensor sharing are correct
|
|
ptrs = defaultdict(list)
|
|
for k, v in model_tied.state_dict().items():
|
|
ptrs[v.data_ptr()].append(k)
|
|
|
|
shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}
|
|
|
|
for _, shared_names in shared_ptrs.items():
|
|
reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
|
|
self.assertEqual(
|
|
len(reloaded_ptrs),
|
|
1,
|
|
f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
|
|
)
|
|
|
|
def test_load_save_without_tied_weights(self):
|
|
for model_class in self.all_model_classes:
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.tie_word_embeddings = False
|
|
model = model_class(config)
|
|
with tempfile.TemporaryDirectory() as d:
|
|
model.save_pretrained(d)
|
|
|
|
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
|
|
# Checking the state dicts are correct
|
|
reloaded_state = model_reloaded.state_dict()
|
|
for k, v in model.state_dict().items():
|
|
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
|
|
torch.testing.assert_close(
|
|
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
|
|
)
|
|
# Checking there was no complain of missing weights
|
|
self.assertEqual(infos["missing_keys"], [])
|
|
|
|
def test_tied_weights_keys(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.get_text_config().tie_word_embeddings = True
|
|
for model_class in self.all_model_classes:
|
|
model_tied = model_class(config)
|
|
|
|
ptrs = collections.defaultdict(list)
|
|
for name, tensor in model_tied.state_dict().items():
|
|
ptrs[id_tensor_storage(tensor)].append(name)
|
|
|
|
# These are all the pointers of shared tensors.
|
|
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
|
|
|
|
tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
|
|
# Detect we get a hit for each key
|
|
for key in tied_weight_keys:
|
|
is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
|
|
self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
|
|
|
|
# Removed tied weights found from tied params -> there should only be one left after
|
|
for key in tied_weight_keys:
|
|
for i in range(len(tied_params)):
|
|
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]
|
|
|
|
tied_params = [group for group in tied_params if len(group) > 1]
|
|
self.assertListEqual(
|
|
tied_params,
|
|
[],
|
|
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
|
|
)
|
|
|
|
def test_model_weights_reload_no_missing_tied_weights(self):
|
|
for model_class in self.all_model_classes:
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
# We are nuking ALL weights on file, so every parameter should
|
|
# yell on load. We're going to detect if we yell too much, or too little.
|
|
placeholder_dict = {"tensor": torch.tensor([1, 2])}
|
|
safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
|
|
model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
|
|
|
|
params = dict(model_reloaded.named_parameters())
|
|
params.update(dict(model_reloaded.named_buffers()))
|
|
param_names = set(params.keys())
|
|
|
|
missing_keys = set(infos["missing_keys"])
|
|
|
|
extra_missing = missing_keys - param_names
|
|
# Remove tied weights from extra missing: they are normally not warned as missing if their tied
|
|
# counterpart is present but here there are no weights at all so we do get the warning.
|
|
ptrs = collections.defaultdict(list)
|
|
for name, tensor in model_reloaded.state_dict().items():
|
|
ptrs[id_tensor_storage(tensor)].append(name)
|
|
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
|
|
for group in tied_params:
|
|
# We remove the group from extra_missing if not all weights from group are in it
|
|
if len(set(group) - extra_missing) > 0:
|
|
extra_missing = extra_missing - set(group)
|
|
|
|
self.assertEqual(
|
|
extra_missing,
|
|
set(),
|
|
f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
|
|
f"For debugging, tied parameters are {tied_params}",
|
|
)
|
|
|
|
missed_missing = param_names - missing_keys
|
|
# Remove nonpersistent buffers from missed_missing
|
|
buffers = [n for n, _ in model_reloaded.named_buffers()]
|
|
nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
|
|
missed_missing = missed_missing - nonpersistent_buffers
|
|
|
|
if model_reloaded._keys_to_ignore_on_load_missing is None:
|
|
expected_missing = set()
|
|
else:
|
|
expected_missing = set()
|
|
for pattern in model_reloaded._keys_to_ignore_on_load_missing:
|
|
expected_missing.update({k for k in param_names if re.search(pattern, k) is not None})
|
|
self.assertEqual(
|
|
missed_missing,
|
|
expected_missing,
|
|
f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
|
|
" parameters. If they are non persistent buffers make sure to instantiate them with"
|
|
" `persistent=False`",
|
|
)
|
|
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def set_nan_tensor_to_zero(t):
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (list, tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(
|
|
tuple_object.values(), dict_object.values()
|
|
):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
# model might return non-tensors objects (e.g. Cache class)
|
|
elif isinstance(tuple_object, torch.Tensor):
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
if self.has_attentions:
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(
|
|
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
|
|
)
|
|
|
|
# Don't copy this method to model specific test file!
|
|
# TODO: remove this method once the issues are all fixed!
|
|
def _make_attention_mask_non_null(self, inputs_dict):
|
|
"""Make sure no sequence has all zeros as attention mask"""
|
|
|
|
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
|
|
if k in inputs_dict:
|
|
attention_mask = inputs_dict[k]
|
|
|
|
# Make sure no all 0s attention masks - to avoid failure at this moment.
|
|
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
|
|
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
|
|
attention_mask = torch.cat(
|
|
[torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
|
|
)
|
|
|
|
# Here we make the first sequence with all 0s as attention mask.
|
|
# Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
|
|
# values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
|
|
# TODO: enable this block once the large negative values thing is cleaned up.
|
|
# (see https://github.com/huggingface/transformers/issues/14859)
|
|
# attention_mask = torch.cat(
|
|
# [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
|
|
# dim=0
|
|
# )
|
|
|
|
inputs_dict[k] = attention_mask
|
|
|
|
# Don't copy this method to model specific test file!
|
|
# TODO: remove this method once the issues are all fixed!
|
|
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
|
|
"""For temporarily ignoring some failed test cases (issues to be fixed)"""
|
|
|
|
tf_keys = {k for k, v in tf_outputs.items() if v is not None}
|
|
pt_keys = {k for k, v in pt_outputs.items() if v is not None}
|
|
|
|
key_differences = tf_keys.symmetric_difference(pt_keys)
|
|
|
|
if model_class.__name__ in [
|
|
"FlaubertWithLMHeadModel",
|
|
"FunnelForPreTraining",
|
|
"ElectraForPreTraining",
|
|
"XLMWithLMHeadModel",
|
|
]:
|
|
for k in key_differences:
|
|
if k in ["loss", "losses"]:
|
|
tf_keys.discard(k)
|
|
pt_keys.discard(k)
|
|
elif model_class.__name__.startswith("GPT2"):
|
|
# `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
|
|
tf_keys.discard("past_key_values")
|
|
pt_keys.discard("past_key_values")
|
|
|
|
# create new outputs from the remaining fields
|
|
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
|
|
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})
|
|
|
|
return new_tf_outputs, new_pt_outputs
|
|
|
|
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
|
|
diff = np.abs(a - b).max()
|
|
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
|
|
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
model_forward_args = inspect.signature(model.forward).parameters
|
|
if "inputs_embeds" not in model_forward_args:
|
|
self.skipTest(reason="This model doesn't use `inputs_embeds`")
|
|
|
|
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if not self.is_encoder_decoder:
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
else:
|
|
encoder_input_ids = inputs["input_ids"]
|
|
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
|
|
del inputs["input_ids"]
|
|
inputs.pop("decoder_input_ids", None)
|
|
|
|
wte = model.get_input_embeddings()
|
|
if not self.is_encoder_decoder:
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
else:
|
|
inputs["inputs_embeds"] = wte(encoder_input_ids)
|
|
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)[0]
|
|
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
|
|
continue
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
model_forward_args = inspect.signature(model.forward).parameters
|
|
if "inputs_embeds" not in model_forward_args:
|
|
self.skipTest(reason="This model doesn't use `inputs_embeds`")
|
|
|
|
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
|
|
pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1
|
|
|
|
wte = model.get_input_embeddings()
|
|
if not self.is_encoder_decoder:
|
|
input_ids = inputs["input_ids"]
|
|
# some models infer position ids/attn mask differently when input ids
|
|
# by check if pad_token let's make sure no padding is in input ids
|
|
not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
|
|
input_ids[input_ids == pad_token_id] = not_pad_token_id
|
|
del inputs["input_ids"]
|
|
inputs_embeds = wte(input_ids)
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
else:
|
|
encoder_input_ids = inputs["input_ids"]
|
|
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
|
|
encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
|
|
decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
|
|
del inputs["input_ids"]
|
|
inputs.pop("decoder_input_ids", None)
|
|
inputs_embeds = wte(encoder_input_ids)
|
|
decoder_inputs_embeds = wte(decoder_input_ids)
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
|
|
out_embeds = model(
|
|
inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
|
|
)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
@require_torch_gpu
|
|
@require_torch_multi_gpu
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# some params shouldn't be scattered by nn.DataParallel
|
|
# so just remove them if they are present.
|
|
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
|
|
for k in blacklist_non_batched_params:
|
|
inputs_dict.pop(k, None)
|
|
|
|
# move input tensors to accelerator O
|
|
for k, v in inputs_dict.items():
|
|
if torch.is_tensor(v):
|
|
inputs_dict[k] = v.to(0)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
model.to(0)
|
|
model.eval()
|
|
|
|
# Wrap model in nn.DataParallel
|
|
model = nn.DataParallel(model)
|
|
with torch.no_grad():
|
|
_ = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
@require_torch_gpu
|
|
@require_torch_multi_gpu
|
|
def test_model_parallelization(self):
|
|
if not self.test_model_parallel:
|
|
self.skipTest(reason="test_model_parallel is set to False")
|
|
|
|
# a candidate for testing_utils
|
|
def get_current_gpu_memory_use():
|
|
"""returns a list of VRAM allocations per GPU in MBs"""
|
|
|
|
per_device_memory = []
|
|
for id in range(backend_device_count(torch_device)):
|
|
with backend_torch_accelerator_module(torch_device).device(id):
|
|
per_device_memory.append(backend_memory_allocated(torch_device) >> 20)
|
|
|
|
return per_device_memory
|
|
|
|
# Needs a large model to see the difference.
|
|
config = self.model_tester.get_large_model_config()
|
|
|
|
for model_class in self.all_parallelizable_model_classes:
|
|
backend_empty_cache(torch_device)
|
|
|
|
# 1. single gpu memory load + unload + memory measurements
|
|
# Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
|
|
memory_at_start = get_current_gpu_memory_use()
|
|
|
|
# Put model on device 0 and take a memory snapshot
|
|
model = model_class(config)
|
|
model.to(f"{torch_device}:0")
|
|
memory_after_model_load = get_current_gpu_memory_use()
|
|
|
|
# The memory use on device 0 should be higher than it was initially.
|
|
self.assertGreater(memory_after_model_load[0], memory_at_start[0])
|
|
|
|
del model
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
# 2. MP test
|
|
# it's essential to re-calibrate the usage before the next stage
|
|
memory_at_start = get_current_gpu_memory_use()
|
|
|
|
# Spread model layers over multiple devices
|
|
model = model_class(config)
|
|
model.parallelize()
|
|
memory_after_parallelization = get_current_gpu_memory_use()
|
|
|
|
# Assert that the memory use on all devices is higher than it was when loaded only on CPU
|
|
for n in range(len(model.device_map.keys())):
|
|
self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
|
|
|
|
# Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
|
|
self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])
|
|
|
|
# Assert that the memory use of device 1 is higher than it was when the entire model was loaded
|
|
# on device 0 and device 1 wasn't used at all
|
|
self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])
|
|
|
|
del model
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@require_torch_gpu
|
|
@require_torch_multi_gpu
|
|
def test_model_parallel_equal_results(self):
|
|
if not self.test_model_parallel:
|
|
self.skipTest(reason="test_model_parallel is set to False")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_parallelizable_model_classes:
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
def cast_to_device(dictionary, device):
|
|
output = {}
|
|
for k, v in dictionary.items():
|
|
if isinstance(v, torch.Tensor):
|
|
output[k] = v.to(device)
|
|
else:
|
|
output[k] = v
|
|
|
|
return output
|
|
|
|
model = model_class(config)
|
|
output = model(**cast_to_device(inputs_dict, "cpu"))
|
|
|
|
model.parallelize()
|
|
|
|
parallel_output = model(**cast_to_device(inputs_dict, f"{torch_device}:0"))
|
|
|
|
for value, parallel_value in zip(output, parallel_output):
|
|
if isinstance(value, torch.Tensor):
|
|
torch.testing.assert_close(value, parallel_value.to("cpu"), rtol=1e-7, atol=1e-7)
|
|
elif isinstance(value, (tuple, list)):
|
|
for value_, parallel_value_ in zip(value, parallel_value):
|
|
torch.testing.assert_close(value_, parallel_value_.to("cpu"), rtol=1e-7, atol=1e-7)
|
|
|
|
def check_device_map_is_respected(self, model, device_map):
|
|
for param_name, param in model.named_parameters():
|
|
# Find device in device_map
|
|
while len(param_name) > 0 and param_name not in device_map:
|
|
param_name = ".".join(param_name.split(".")[:-1])
|
|
if param_name not in device_map:
|
|
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
|
|
|
|
param_device = device_map[param_name]
|
|
if param_device in ["cpu", "disk"]:
|
|
self.assertEqual(param.device, torch.device("meta"))
|
|
elif param_device in ["mps"]:
|
|
self.assertEqual(param.device, torch.device("mps"))
|
|
else:
|
|
# when loaded with device_map, `param_device` are integer values for cuda/xpu/hpu/npu/mlu
|
|
self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
|
|
|
|
@require_accelerate
|
|
@mark.accelerate_tests
|
|
@require_torch_accelerator
|
|
def test_disk_offload_bin(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class._no_split_modules is None:
|
|
continue
|
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config).eval()
|
|
model = model.to(torch_device)
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict_class)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
|
|
|
|
with self.assertRaises(ValueError):
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
# This errors out cause it's missing an offload folder
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
|
|
max_size = int(self.model_split_percents[1] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
new_model = model_class.from_pretrained(
|
|
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
|
|
)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict_class)
|
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
|
|
[
|
|
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
|
|
for a, b in zip(base_output[0], new_output[0])
|
|
]
|
|
else:
|
|
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
|
|
|
|
@require_accelerate
|
|
@mark.accelerate_tests
|
|
@require_torch_accelerator
|
|
def test_disk_offload_safetensors(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class._no_split_modules is None:
|
|
continue
|
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config).eval()
|
|
model = model.to(torch_device)
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict_class)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
max_size = int(self.model_split_percents[1] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
|
|
# This doesn't error out as it's in safetensors and doesn't need an offload folder
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict_class)
|
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
|
|
[
|
|
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
|
|
for a, b in zip(base_output[0], new_output[0])
|
|
]
|
|
else:
|
|
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
|
|
|
|
@require_accelerate
|
|
@mark.accelerate_tests
|
|
@require_torch_accelerator
|
|
def test_cpu_offload(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class._no_split_modules is None:
|
|
continue
|
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict_class)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, "cpu": model_size * 2}
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict_class)
|
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
|
|
[
|
|
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
|
|
for a, b in zip(base_output[0], new_output[0])
|
|
]
|
|
else:
|
|
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
|
|
|
|
@require_non_hpu
|
|
@require_accelerate
|
|
@mark.accelerate_tests
|
|
@require_torch_multi_accelerator
|
|
def test_model_parallelism(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class._no_split_modules is None:
|
|
continue
|
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict_class)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict_class)
|
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
|
|
[
|
|
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
|
|
for a, b in zip(base_output[0], new_output[0])
|
|
]
|
|
else:
|
|
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
|
|
|
|
def test_problem_types(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
problem_types = [
|
|
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
|
|
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
|
|
{"title": "regression", "num_labels": 1, "dtype": torch.float},
|
|
]
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ not in [
|
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
|
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
|
|
]:
|
|
continue
|
|
|
|
for problem_type in problem_types:
|
|
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
|
|
config.problem_type = problem_type["title"]
|
|
config.num_labels = problem_type["num_labels"]
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
|
|
if problem_type["num_labels"] > 1:
|
|
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
|
|
|
|
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
|
|
|
|
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
|
|
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
|
|
# they have the same size." which is a symptom something in wrong for the regression problem.
|
|
# See https://github.com/huggingface/transformers/issues/11780
|
|
with warnings.catch_warnings(record=True) as warning_list:
|
|
loss = model(**inputs).loss
|
|
for w in warning_list:
|
|
if "Using a target size that is different to the input size" in str(w.message):
|
|
raise ValueError(
|
|
f"Something is going wrong in the regression problem: intercepted {w.message}"
|
|
)
|
|
|
|
loss.backward()
|
|
|
|
def test_load_with_mismatched_shapes(self):
|
|
if not self.test_mismatched_shapes:
|
|
self.skipTest(reason="test_missmatched_shapes is set to False")
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
|
|
continue
|
|
|
|
with self.subTest(msg=f"Testing {model_class}"):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = model_class(config)
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
# Fails when we don't set ignore_mismatched_sizes=True
|
|
with self.assertRaises(RuntimeError):
|
|
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
|
|
with self.assertRaises(RuntimeError):
|
|
new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
|
|
|
|
logger = logging.get_logger("transformers.modeling_utils")
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
new_model = AutoModelForSequenceClassification.from_pretrained(
|
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
|
|
)
|
|
self.assertIn("the shapes did not match", cl.out)
|
|
new_model.to(torch_device)
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
logits = new_model(**inputs).logits
|
|
self.assertEqual(logits.shape[1], 42)
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
new_model_without_prefix = AutoModel.from_pretrained(
|
|
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
|
|
)
|
|
self.assertIn("the shapes did not match", cl.out)
|
|
input_ids = ids_tensor((2, 8), 10)
|
|
new_model_without_prefix.to(torch_device)
|
|
if self.is_encoder_decoder:
|
|
new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
|
|
else:
|
|
new_model_without_prefix(input_ids)
|
|
|
|
def test_mismatched_shapes_have_properly_initialized_weights(self):
|
|
if not self.test_mismatched_shapes:
|
|
self.skipTest(reason="test_missmatched_shapes is set to False")
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
|
|
for model_class in self.all_model_classes:
|
|
mappings = [
|
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
|
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
|
|
]
|
|
is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)
|
|
|
|
if not is_classication_model:
|
|
continue
|
|
|
|
# TODO: ydshieh
|
|
is_special_classes = model_class.__name__ in [
|
|
"wav2vec2.masked_spec_embed",
|
|
"Wav2Vec2ForSequenceClassification",
|
|
"CLIPForImageClassification",
|
|
"Siglip2ForImageClassification",
|
|
"RegNetForImageClassification",
|
|
"ResNetForImageClassification",
|
|
"UniSpeechSatForSequenceClassification",
|
|
"Wav2Vec2BertForSequenceClassification",
|
|
"PvtV2ForImageClassification",
|
|
"Wav2Vec2ConformerForSequenceClassification",
|
|
"WavLMForSequenceClassification",
|
|
"SwiftFormerForImageClassification",
|
|
"SEWForSequenceClassification",
|
|
"BitForImageClassification",
|
|
"SEWDForSequenceClassification",
|
|
"SiglipForImageClassification",
|
|
"HubertForSequenceClassification",
|
|
"Swinv2ForImageClassification",
|
|
"Data2VecAudioForSequenceClassification",
|
|
"UniSpeechForSequenceClassification",
|
|
"PvtForImageClassification",
|
|
"ModernBertForSequenceClassification",
|
|
"ModernBertForTokenClassification",
|
|
"TimmWrapperForImageClassification",
|
|
"ModernBertForQuestionAnswering",
|
|
]
|
|
special_param_names = [
|
|
r"^bit\.",
|
|
r"^classifier\.weight",
|
|
r"^classifier\.bias",
|
|
r"^classifier\..+\.weight",
|
|
r"^classifier\..+\.bias",
|
|
r"^data2vec_audio\.",
|
|
r"^dist_head\.",
|
|
r"^head\.",
|
|
r"^hubert\.",
|
|
r"^pvt\.",
|
|
r"^pvt_v2\.",
|
|
r"^regnet\.",
|
|
r"^resnet\.",
|
|
r"^sew\.",
|
|
r"^sew_d\.",
|
|
r"^swiftformer\.",
|
|
r"^swinv2\.",
|
|
r"^transformers\.models\.swiftformer\.",
|
|
r"^timm_model\.",
|
|
r"^unispeech\.",
|
|
r"^unispeech_sat\.",
|
|
r"^vision_model\.",
|
|
r"^wav2vec2\.",
|
|
r"^wav2vec2_bert\.",
|
|
r"^wav2vec2_conformer\.",
|
|
r"^wavlm\.",
|
|
]
|
|
|
|
with self.subTest(msg=f"Testing {model_class}"):
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = model_class(configs_no_init)
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
# Fails when we don't set ignore_mismatched_sizes=True
|
|
with self.assertRaises(RuntimeError):
|
|
new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
|
|
|
|
logger = logging.get_logger("transformers.modeling_utils")
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
|
|
self.assertIn("the shapes did not match", cl.out)
|
|
|
|
for name, param in new_model.named_parameters():
|
|
if param.requires_grad:
|
|
param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
|
|
if not (
|
|
is_special_classes
|
|
and any(len(re.findall(target, name)) > 0 for target in special_param_names)
|
|
):
|
|
self.assertIn(
|
|
param_mean,
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
# Here we allow the parameters' mean to be in the range [-5.0, 5.0] instead of being
|
|
# either `0.0` or `1.0`, because their initializations are not using
|
|
# `config.initializer_factor` (or something similar). The purpose of this test is simply
|
|
# to make sure they are properly initialized (to avoid very large value or even `nan`).
|
|
self.assertGreaterEqual(
|
|
param_mean,
|
|
-5.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
self.assertLessEqual(
|
|
param_mean,
|
|
5.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
|
|
# 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
|
|
class MyClass(PreTrainedModel):
|
|
config_class = PretrainedConfig
|
|
|
|
def __init__(self, config=None):
|
|
super().__init__(config if config is not None else PretrainedConfig())
|
|
self.linear = nn.Linear(10, config.num_labels, bias=True)
|
|
self.embedding = nn.Embedding(10, 10)
|
|
self.std = 1
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
|
|
if module.bias is not None:
|
|
module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)
|
|
|
|
# Used to make sure the weights with matched shape are loaded correctly
|
|
config = PretrainedConfig()
|
|
config.num_labels = 3
|
|
model = MyClass(config=config)
|
|
|
|
# Used to make sure the weights with mismatched shape are properly initialized
|
|
set_seed(0)
|
|
config = PretrainedConfig()
|
|
config.num_labels = 4
|
|
# not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
|
|
# same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
|
|
# for `linear` part.
|
|
with ContextManagers([no_init_weights()]):
|
|
target_model = MyClass(config=config)
|
|
target_model.apply(target_model._initialize_weights)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
state_dict = model.state_dict()
|
|
del state_dict["linear.weight"]
|
|
|
|
model.config.save_pretrained(tmpdirname)
|
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
|
|
|
|
set_seed(0)
|
|
new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)
|
|
|
|
for key in new_model.state_dict().keys():
|
|
# check weight values for weights with matched shapes are identical
|
|
# (i.e. correctly loaded from the checkpoint)
|
|
if key not in ["linear.weight", "linear.bias"]:
|
|
max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
|
|
self.assertLessEqual(
|
|
max_diff.item(),
|
|
1e-6,
|
|
msg=f"the weight values for `{key}` in `new_model` and `model` are not identical",
|
|
)
|
|
else:
|
|
# check we have some mismatched shapes
|
|
self.assertNotEqual(
|
|
model.state_dict()[key].shape,
|
|
new_model.state_dict()[key].shape,
|
|
msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
|
|
)
|
|
# check the weights with mismatched shape are properly initialized
|
|
max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
|
|
self.assertLessEqual(
|
|
max_diff.item(),
|
|
1e-6,
|
|
msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
|
|
)
|
|
|
|
def test_model_is_small(self):
|
|
# Just a consistency check to make sure we are not running tests on 80M parameter models.
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
num_params = model.num_parameters()
|
|
assert num_params < 1000000, (
|
|
f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
@is_flaky()
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1]
|
|
if dummy_input.dtype in [torch.float32, torch.float16]:
|
|
dummy_input = dummy_input.to(torch.bfloat16)
|
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
|
|
if dummy_attention_mask is not None:
|
|
dummy_attention_mask = dummy_attention_mask[:1]
|
|
dummy_attention_mask[:, 1:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
|
|
if model.config.is_encoder_decoder:
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
|
|
|
|
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
else:
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = (
|
|
outputs.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs.decoder_hidden_states[-1]
|
|
)
|
|
logits_fa = (
|
|
outputs_fa.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs_fa.decoder_hidden_states[-1]
|
|
)
|
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
other_inputs = {
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
else:
|
|
other_inputs = {
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
|
|
logits = (
|
|
outputs.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs.decoder_hidden_states[-1]
|
|
)
|
|
logits_fa = (
|
|
outputs_fa.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs_fa.decoder_hidden_states[-1]
|
|
)
|
|
|
|
assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
|
|
|
|
# check with inference + dropout
|
|
model.train()
|
|
_ = model_fa(dummy_input, **other_inputs)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
@is_flaky()
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1]
|
|
if dummy_input.dtype in [torch.float32, torch.float16]:
|
|
dummy_input = dummy_input.to(torch.bfloat16)
|
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
|
|
if dummy_attention_mask is not None:
|
|
dummy_attention_mask = dummy_attention_mask[:1]
|
|
dummy_attention_mask[:, :-1] = 1
|
|
dummy_attention_mask[:, -1:] = 0
|
|
|
|
if model.config.is_encoder_decoder:
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
|
|
|
|
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
else:
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = (
|
|
outputs.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs.decoder_hidden_states[-1]
|
|
)
|
|
logits_fa = (
|
|
outputs_fa.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs_fa.decoder_hidden_states[-1]
|
|
)
|
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
other_inputs = {
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
else:
|
|
other_inputs = {
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
|
|
logits = (
|
|
outputs.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs.decoder_hidden_states[-1]
|
|
)
|
|
logits_fa = (
|
|
outputs_fa.hidden_states[-1]
|
|
if not model.config.is_encoder_decoder
|
|
else outputs_fa.decoder_hidden_states[-1]
|
|
)
|
|
|
|
assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
|
|
|
|
def test_attn_implementation_composite_models(self):
|
|
"""
|
|
Tests if composite models can receive a dict object as attn_implementation, where each key should be
|
|
one of the sub-configs from the model's config.
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not self._is_composite:
|
|
self.skipTest("Model is not a composite model.")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# set eager as it will be the one supported in all models
|
|
# we just need to test if passing 'attn_implementation' as a dict fails or not
|
|
attn_implementation_per_subconfig = {}
|
|
for key in config.sub_configs.keys():
|
|
attn_implementation_per_subconfig[key] = "eager"
|
|
|
|
config._attn_implementation = attn_implementation_per_subconfig
|
|
model = model_class(config)
|
|
for key in config.sub_configs.keys():
|
|
sub_config = getattr(model.config, key)
|
|
self.assertTrue(sub_config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
class_name.endswith("Attention")
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation != "eager"
|
|
):
|
|
raise ValueError(
|
|
f"The eager model should not have SDPA/FA2 attention layers but got `{class_name}.config._attn_implementation={submodule.config._attn_implementation}`"
|
|
)
|
|
|
|
# Set the attention to default `None` but the text config to `eager`
|
|
# The model should load encoders in SDPA but not the text attention
|
|
config._attn_implementation = None
|
|
config.get_text_config(decoder=True)._attn_implementation = "eager"
|
|
model = model_class(config)
|
|
self.assertTrue(model.config.get_text_config(decoder=True)._attn_implementation == "eager")
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_non_composite_models(self):
|
|
"""
|
|
Tests if non-composite models dispatch correctly on SDPA/eager when requested so when loading the model.
|
|
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self.all_model_classes[0]._supports_sdpa or self._is_composite:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
|
|
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
class_name.endswith("Attention")
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation == "sdpa"
|
|
):
|
|
raise ValueError(
|
|
f"The eager model should not have SDPA attention layers but got `{class_name}.config._attn_implementation={submodule.config._attn_implementation}`"
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
"""
|
|
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
|
|
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
|
|
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
|
|
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
|
|
See https://github.com/huggingface/transformers/pull/32238 for more info
|
|
|
|
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
|
|
that has a different set of sub-configs has to overwrite this test.
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self._is_composite:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
vision_model_names = {"visual", "image_tower", "vision_tower", "vision_model"}
|
|
language_model_names = {"language_model", "model", "text_model"}
|
|
vision_model_name = [name for name in vision_model_names if hasattr(model_sdpa, name)][0]
|
|
language_model_name = [name for name in language_model_names if hasattr(model_sdpa, name)][0]
|
|
|
|
vision_model_sdpa = getattr(model_sdpa, vision_model_name)
|
|
language_model_sdpa = getattr(model_sdpa, language_model_name)
|
|
text_attn = "sdpa" if language_model_sdpa._supports_sdpa else "eager"
|
|
vision_attn = "sdpa" if vision_model_sdpa._supports_sdpa else "eager"
|
|
|
|
# `None` as it is the requested one which will be assigned to each sub-config
|
|
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
|
|
self.assertTrue(language_model_sdpa.config._attn_implementation == text_attn)
|
|
self.assertTrue(vision_model_sdpa.config._attn_implementation == vision_attn)
|
|
|
|
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
self.assertTrue(getattr(model_eager, language_model_name).config._attn_implementation == "eager")
|
|
self.assertTrue(getattr(model_eager, vision_model_name).config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
class_name.endswith("Attention")
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation == "sdpa"
|
|
):
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
|
|
@require_torch_sdpa
|
|
def test_eager_matches_sdpa_inference(
|
|
self, name, torch_dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
|
|
):
|
|
# TODO: we shouldn't need to do this skip, i.e. the test would be composable from the model tester. CLIP-like
|
|
# models have a custom mixin, which we detect to skip this test.
|
|
if any(".CLIPModelTesterMixin" in str(base) for base in self.__class__.__bases__):
|
|
self.skipTest(reason="CLIP-like models have a different `test_eager_matches_sdpa_inference`")
|
|
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self.all_model_classes[0]._supports_sdpa:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
# convert shorthand name to torch.dtype
|
|
if torch_dtype == "fp16":
|
|
torch_dtype = torch.float16
|
|
elif torch_dtype == "bf16":
|
|
torch_dtype = torch.bfloat16
|
|
elif torch_dtype == "fp32":
|
|
torch_dtype = torch.float32
|
|
|
|
if not is_torch_fp16_available_on_device(torch_device) and torch_dtype == torch.float16:
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if not is_torch_bf16_available_on_device(torch_device) and torch_dtype == torch.bfloat16:
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Dictionary of tolerances for eager <> sdpa tests. Key = (device, sdpa_kernels_enabled, dtype)
|
|
atols = {
|
|
("cpu", False, torch.float32): 1e-6,
|
|
("cpu", False, torch.float16): 5e-3,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-6,
|
|
("cpu", True, torch.float16): 5e-3,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-6,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-6,
|
|
("cuda", True, torch.bfloat16): 1e-2,
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
rtols = {
|
|
("cpu", False, torch.float32): 1e-4,
|
|
("cpu", False, torch.float16): 5e-3,
|
|
("cpu", False, torch.bfloat16): 1e-2,
|
|
("cpu", True, torch.float32): 1e-4,
|
|
("cpu", True, torch.float16): 5e-3,
|
|
("cpu", True, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float32): 1e-4,
|
|
("cuda", False, torch.bfloat16): 1e-2,
|
|
("cuda", False, torch.float16): 5e-3,
|
|
("cuda", True, torch.float32): 1e-4,
|
|
("cuda", True, torch.bfloat16): 3e-2, # (different from others)
|
|
("cuda", True, torch.float16): 5e-3,
|
|
}
|
|
|
|
set_model_tester_for_less_flaky_test(self)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
set_config_for_less_flaky_test(config)
|
|
model = model_class(config)
|
|
# TODO: standardize the interfaces for musicgen models, see other todo in this test
|
|
if model.__class__.__name__ == "MusicgenMelodyForConditionalGeneration":
|
|
is_encoder_decoder = True
|
|
else:
|
|
is_encoder_decoder = model.config.is_encoder_decoder
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_from_pretrained_kwargs = {
|
|
"pretrained_model_name_or_path": tmpdirname,
|
|
"torch_dtype": torch_dtype,
|
|
}
|
|
|
|
if (
|
|
hasattr(config, "use_mask_token")
|
|
or "use_mask_token" in inspect.signature(model.__init__).parameters
|
|
):
|
|
model_from_pretrained_kwargs["use_mask_token"] = True
|
|
|
|
# TODO: remove this try/except, models should have a shared API
|
|
try:
|
|
model_sdpa = model_class.from_pretrained(
|
|
**model_from_pretrained_kwargs, attn_implementation="sdpa"
|
|
)
|
|
except ValueError:
|
|
model_sdpa = model_class.from_pretrained(**model_from_pretrained_kwargs)
|
|
model_sdpa = model_sdpa.eval().to(torch_device, dtype=torch_dtype)
|
|
|
|
model_eager = model_class.from_pretrained(**model_from_pretrained_kwargs, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device, dtype=torch_dtype)
|
|
|
|
set_model_for_less_flaky_test(model_eager)
|
|
set_model_for_less_flaky_test(model_sdpa)
|
|
|
|
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
|
|
if not (self.has_attentions and can_output_attn) and output_attentions:
|
|
self.skipTest(reason="Model does not support output_attentions")
|
|
|
|
# TODO: if we can also check with `batch_size=1` without being flaky?
|
|
for batch_size in [7]:
|
|
# musicgen decoder models; TODO: find better abstraction
|
|
if hasattr(self.model_tester, "num_codebooks") and not hasattr(model_eager, "text_encoder"):
|
|
input_data_batch_size = batch_size * self.model_tester.num_codebooks
|
|
else:
|
|
input_data_batch_size = batch_size
|
|
|
|
processed_inputs = {}
|
|
processed_inputs[model.main_input_name] = inputs_dict[model.main_input_name]
|
|
|
|
for key in getattr(self, "additional_model_inputs", []):
|
|
# Some models don't have all `additional_model_inputs`, especially when we
|
|
# craft cases to test model in different settings
|
|
if key in inputs_dict:
|
|
processed_inputs[key] = inputs_dict[key]
|
|
|
|
for key, value in processed_inputs.items():
|
|
if torch.is_floating_point(value):
|
|
value = value.to(torch_dtype)
|
|
|
|
# extend value to have at least `input_data_batch_size` elements
|
|
if value.shape[0] < input_data_batch_size:
|
|
size = (input_data_batch_size - value.shape[0], *value.shape[1:])
|
|
if torch.is_floating_point(value):
|
|
extension = torch.rand(size=size, dtype=value.dtype, device=torch_device)
|
|
else:
|
|
extension = torch.randint(high=5, size=size, dtype=value.dtype, device=torch_device)
|
|
value = torch.cat((value, extension), dim=0).to(torch_device)
|
|
|
|
processed_inputs[key] = value[:input_data_batch_size]
|
|
|
|
if not use_attention_mask:
|
|
dummy_attention_mask = None
|
|
else:
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
if dummy_attention_mask is None:
|
|
if is_encoder_decoder:
|
|
seqlen = inputs_dict.get(
|
|
"decoder_input_ids", processed_inputs[model.main_input_name]
|
|
).shape[-1]
|
|
else:
|
|
seqlen = processed_inputs[model.main_input_name].shape[-1]
|
|
dummy_attention_mask = torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
|
|
|
|
# extend dummy_attention_mask to have at least `batch_size` elements
|
|
if dummy_attention_mask.shape[0] < batch_size:
|
|
size = (batch_size - dummy_attention_mask.shape[0], *dummy_attention_mask.shape[1:])
|
|
extension = torch.ones(size=size, dtype=dummy_attention_mask.dtype, device=torch_device)
|
|
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
|
|
|
|
dummy_attention_mask = dummy_attention_mask[:batch_size].to(torch_device)
|
|
|
|
dummy_attention_mask[:] = 1
|
|
if padding_side == "left":
|
|
dummy_attention_mask[-1, :2] = 0
|
|
dummy_attention_mask[-1, 2:] = 1
|
|
elif padding_side == "right":
|
|
dummy_attention_mask[-1, -2:] = 0
|
|
dummy_attention_mask[-1, :-2] = 1
|
|
|
|
if is_encoder_decoder:
|
|
# musicgen encoder-decoder models; TODO: find better abstraction
|
|
if hasattr(self.model_tester, "num_codebooks"):
|
|
input_data_batch_size = batch_size * self.model_tester.num_codebooks
|
|
else:
|
|
input_data_batch_size = batch_size
|
|
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", processed_inputs[model.main_input_name])
|
|
decoder_input_ids = decoder_input_ids[:input_data_batch_size]
|
|
if decoder_input_ids.shape[0] != input_data_batch_size:
|
|
extension = torch.ones(
|
|
input_data_batch_size - decoder_input_ids.shape[0],
|
|
*decoder_input_ids.shape[1:],
|
|
dtype=decoder_input_ids.dtype,
|
|
device=torch_device,
|
|
)
|
|
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
|
|
decoder_input_ids = decoder_input_ids.to(torch_device)
|
|
|
|
# TODO: never an `attention_mask` arg here?
|
|
processed_inputs.update(
|
|
{
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
)
|
|
else:
|
|
processed_inputs.update(
|
|
{
|
|
"output_hidden_states": True,
|
|
}
|
|
)
|
|
|
|
# Otherwise fails for e.g. WhisperEncoderModel
|
|
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
if self.has_attentions and "output_attentions" in inspect.signature(model_sdpa.forward).parameters:
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
if "bool_masked_pos" in inspect.signature(model_eager.forward).parameters:
|
|
dummy_mask = torch.ones((self.model_tester.num_masks,))
|
|
|
|
# In case of additional token (like class) we define a custom `mask_length`
|
|
if hasattr(self.model_tester, "mask_length"):
|
|
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
|
|
else:
|
|
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
|
|
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
|
|
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
|
|
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
|
|
|
|
if "noise" in inspect.signature(model_eager.forward).parameters:
|
|
np.random.seed(2)
|
|
num_patches = int((self.model_tester.image_size // self.model_tester.patch_size) ** 2)
|
|
noise = np.random.uniform(size=(batch_size, num_patches))
|
|
processed_inputs["noise"] = torch.from_numpy(noise)
|
|
|
|
# TODO: test gradients as well (& for FA2 as well!)
|
|
with torch.no_grad():
|
|
with sdpa_kernel(
|
|
enable_flash=enable_kernels,
|
|
enable_math=True,
|
|
enable_mem_efficient=enable_kernels,
|
|
):
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
prepared_inputs = {
|
|
k: v.to(torch_device) if isinstance(v, torch.Tensor) else v
|
|
for k, v in prepared_inputs.items()
|
|
}
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
|
|
if "logits_per_text" in outputs_eager:
|
|
key = "logits_per_text"
|
|
elif "vision_hidden_states" in outputs_eager:
|
|
key = "vision_hidden_states"
|
|
elif "audio_values" in outputs_eager:
|
|
key = "audio_values"
|
|
elif "decoder_hidden_states" in outputs_eager:
|
|
key = "decoder_hidden_states"
|
|
elif "logits" in outputs_eager and "Classification" in model_class.__name__:
|
|
key = "logits"
|
|
elif "language_model_outputs" in outputs_eager and "blip" in model_class.__name__.lower():
|
|
outputs_eager = outputs_eager["language_model_outputs"]
|
|
outputs_sdpa = outputs_sdpa["language_model_outputs"]
|
|
key = "hidden_states" if "hidden_states" in outputs_eager else "decoder_hidden_states"
|
|
else:
|
|
key = "hidden_states"
|
|
|
|
# TODO: rename logits -> hidden_states
|
|
logits_eager = outputs_eager[key]
|
|
logits_sdpa = outputs_sdpa[key]
|
|
|
|
if key in ["vision_hidden_states", "decoder_hidden_states", "hidden_states"]:
|
|
logits_eager = logits_eager[-1]
|
|
logits_sdpa = logits_sdpa[-1]
|
|
|
|
if key == "logits_per_text":
|
|
nan_mask = torch.isnan(logits_eager)
|
|
logits_eager[nan_mask] = 0
|
|
logits_sdpa[nan_mask] = 0
|
|
|
|
if torch_device in ["cpu", "cuda"]:
|
|
atol = atols[torch_device, enable_kernels, torch_dtype]
|
|
rtol = rtols[torch_device, enable_kernels, torch_dtype]
|
|
elif torch_device == "hpu":
|
|
atol = atols["cuda", enable_kernels, torch_dtype]
|
|
rtol = rtols["cuda", enable_kernels, torch_dtype]
|
|
elif torch_device == "xpu":
|
|
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
|
|
# which is implemented on PyTorch level using aten operators and is
|
|
# device agnostic with respect to implementation of each aten operator.
|
|
atol = atols["cuda", False, torch_dtype]
|
|
rtol = rtols["cuda", False, torch_dtype]
|
|
else:
|
|
atol = 1e-7
|
|
rtol = 1e-4
|
|
|
|
# Masked tokens output slightly deviates - we don't mind that.
|
|
if use_attention_mask:
|
|
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
|
|
_logits_eager = torch.zeros_like(input=logits_eager)
|
|
|
|
_logits_sdpa[:-1] = logits_sdpa[:-1]
|
|
_logits_eager[:-1] = logits_eager[:-1]
|
|
|
|
if padding_side == "left":
|
|
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
|
|
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]
|
|
|
|
elif padding_side == "right":
|
|
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
|
|
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]
|
|
|
|
logits_sdpa = _logits_sdpa
|
|
logits_eager = _logits_eager
|
|
|
|
results = [
|
|
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
|
|
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
|
|
]
|
|
# If 80% batch elements have matched results, it's fine
|
|
if np.mean(results) < 0.8:
|
|
mean_relative_diff = ((logits_sdpa - logits_eager).abs() / (logits_eager.abs() + 1e-12)).mean()
|
|
raise ValueError(
|
|
f"mean relative difference for {key}: {mean_relative_diff:.3e}, torch atol = {atol}, torch rtol = "
|
|
f"{rtol}"
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
@require_torch_accelerator
|
|
@slow
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
device_type, major, minor = get_device_properties()
|
|
if device_type == "cuda" and major < 8:
|
|
self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
|
|
elif device_type == "rocm" and major < 9:
|
|
self.skipTest(reason="This test requires an AMD GPU with compute capability >= 9.0")
|
|
elif device_type not in ["cuda", "rocm", "xpu"]:
|
|
self.skipTest(reason="This test requires a Nvidia or AMD GPU, or an Intel XPU")
|
|
|
|
torch.compiler.reset()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_sdpa:
|
|
self.skipTest(f"{model_class.__name__} does not support SDPA")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
if config.model_type in ["paligemma"]:
|
|
self.skipTest(
|
|
"PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
|
|
)
|
|
if config.model_type in ["modernbert", "gemma3"]:
|
|
self.skipTest(
|
|
reason=f"{config.model_type} currently (transformers==4.52.0) automatically adds an attention_mask input"
|
|
)
|
|
if config.model_type in ["idefics", "idefics2", "idefics3"]:
|
|
self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
|
|
if config.model_type in ["sam"]:
|
|
self.skipTest(reason="SAM requires an attention_mask input for relative positional embeddings")
|
|
|
|
model = model_class(config)
|
|
|
|
sub_models_supporting_sdpa = [
|
|
module._supports_sdpa
|
|
for name, module in model.named_modules()
|
|
if isinstance(module, PreTrainedModel) and name != ""
|
|
]
|
|
supports_sdpa_all_modules = (
|
|
all(sub_models_supporting_sdpa) if len(sub_models_supporting_sdpa) > 0 else model._supports_sdpa
|
|
)
|
|
if not supports_sdpa_all_modules:
|
|
self.skipTest(reason="This models' submodels does not support sdpa")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
|
|
model.to(torch_device)
|
|
|
|
inputs_dict.pop("attention_mask", None)
|
|
inputs_dict.pop("decoder_attention_mask", None)
|
|
|
|
for name, inp in inputs_dict.items():
|
|
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
|
|
inputs_dict[name] = inp.to(torch.float16)
|
|
|
|
with sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
|
_ = model(**inputs_dict)
|
|
|
|
@require_torch_sdpa
|
|
@require_torch_accelerator
|
|
@slow
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
device_type, major, minor = get_device_properties()
|
|
if device_type == "cuda" and major < 8:
|
|
self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
|
|
elif device_type == "rocm" and major < 9:
|
|
self.skipTest(reason="This test requires an AMD GPU with compute capability >= 9.0")
|
|
elif device_type not in ["cuda", "rocm", "xpu"]:
|
|
self.skipTest(reason="This test requires a Nvidia or AMD GPU, or an Intel XPU")
|
|
|
|
torch.compiler.reset()
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_sdpa:
|
|
self.skipTest(f"{model_class.__name__} does not support SDPA")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
if config.model_type in ["dbrx"]:
|
|
self.skipTest(
|
|
"DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
|
|
)
|
|
if getattr(config, "cache_implementation", None) == "hybrid":
|
|
self.skipTest(
|
|
"Cannot compile forward without an existing cache with Hybrid, as `torch._dynamo.mark_static_address` "
|
|
"is a forbidden call."
|
|
)
|
|
|
|
model = model_class(config)
|
|
|
|
sub_models_supporting_sdpa = [
|
|
module._supports_sdpa
|
|
for name, module in model.named_modules()
|
|
if isinstance(module, PreTrainedModel) and name != ""
|
|
]
|
|
supports_sdpa_all_modules = (
|
|
all(sub_models_supporting_sdpa) if len(sub_models_supporting_sdpa) > 0 else model._supports_sdpa
|
|
)
|
|
if not supports_sdpa_all_modules:
|
|
self.skipTest(reason="This models' submodels does not support sdpa")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
|
|
model.to(torch_device)
|
|
|
|
# For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
|
|
# on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
|
|
model = torch.compile(model, dynamic=True)
|
|
|
|
inputs_dict.pop("attention_mask", None)
|
|
inputs_dict.pop("decoder_attention_mask", None)
|
|
for name, inp in inputs_dict.items():
|
|
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
|
|
inputs_dict[name] = inp.to(torch.float16)
|
|
|
|
# use no_grad to save some memory
|
|
with torch.no_grad():
|
|
_ = model(**inputs_dict)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_matches_eager_sliding_window(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "minimax", "qwen2", "qwen_moe", "starcoder2"]
|
|
|
|
if len(self.all_generative_model_classes) == 0:
|
|
self.skipTest(f"No generative model classes for {self.__class__.__name__}")
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if model_class._supports_sdpa:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if config.model_type not in WINDOW_ATTENTION_MODELS:
|
|
self.skipTest(f"{config.model_type} does not use window attention")
|
|
|
|
config.sliding_window = 2
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
attention_mask = inputs_dict["attention_mask"]
|
|
|
|
self.assertTrue(dummy_input.ndim == 2)
|
|
self.assertTrue(dummy_input.shape[1] > 6)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
with torch.device(torch_device):
|
|
model_eager = AutoModelForCausalLM.from_config(
|
|
config, attn_implementation="eager", torch_dtype=torch.float32
|
|
)
|
|
|
|
model_eager.save_pretrained(tmpdir)
|
|
|
|
with torch.device(torch_device):
|
|
model_sdpa = AutoModelForCausalLM.from_pretrained(
|
|
tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
|
|
)
|
|
|
|
model_eager = model_eager.eval()
|
|
model_sdpa = model_sdpa.eval()
|
|
|
|
with torch.no_grad():
|
|
with sdpa_kernel(enable_flash=False, enable_math=True, enable_mem_efficient=False):
|
|
res_eager = model_eager(**inputs_dict, return_dict=False)[0]
|
|
res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]
|
|
|
|
# Only non-padding tokens are expected to match.
|
|
self.assertTrue(
|
|
torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
def test_flash_attn_2_can_dispatch_composite_models(self):
|
|
"""
|
|
Tests if composite models can dispatch on FA2 if the sub-models support FA2.
|
|
The tests is needed as we handle differently composite models and we cannot check them
|
|
with above tests. If any of the sub-models does not support FA2, we'll raise an error when dispatching
|
|
that particular sub-model. Otherwise we dispatch safely in all sub-models, where "sub-models" are specific
|
|
backbone models (LM/vision/audio/etc)
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
torch_dtype = torch.float16
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
if not self._is_composite:
|
|
self.skipTest("This model is not a composite model!")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
|
|
sub_models_supporting_fa2 = [
|
|
module._supports_flash_attn_2
|
|
for name, module in model.named_modules()
|
|
if isinstance(module, PreTrainedModel) and name != ""
|
|
]
|
|
supports_fa2_all_modules = (
|
|
all(sub_models_supporting_fa2)
|
|
if len(sub_models_supporting_fa2) > 0
|
|
else model._supports_flash_attn_2
|
|
)
|
|
if not supports_fa2_all_modules:
|
|
with self.assertRaises(ValueError):
|
|
model_fa2 = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
else:
|
|
model_fa2 = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch_dtype, attn_implementation="flash_attention_2"
|
|
)
|
|
for key in model_fa2.config:
|
|
if isinstance(getattr(model_fa2.config, key), PretrainedConfig):
|
|
sub_config = getattr(model_fa2.config, key)
|
|
self.assertTrue(sub_config._attn_implementation == "flash_attention_2")
|
|
|
|
has_fa2 = False
|
|
for name, submodule in model_fa2.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
"Attention" in class_name
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation == "flash_attention_2"
|
|
):
|
|
has_fa2 = True
|
|
break
|
|
if not has_fa2:
|
|
raise ValueError("The FA2 model should have FA2 layers")
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@require_bitsandbytes
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_fp32_ln(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name]
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
|
|
batch_size = dummy_attention_mask.shape[0]
|
|
|
|
is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size
|
|
|
|
# To avoid errors with padding_side=="right"
|
|
if is_padding_right:
|
|
dummy_attention_mask = torch.ones_like(dummy_input)
|
|
|
|
model = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
load_in_4bit=True,
|
|
)
|
|
|
|
for _, param in model.named_parameters():
|
|
# upcast only layer norms
|
|
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
|
|
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
|
|
|
|
_ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
|
|
# with attention mask
|
|
_ = model(
|
|
dummy_input,
|
|
attention_mask=dummy_attention_mask,
|
|
decoder_input_ids=dummy_decoder_input_ids,
|
|
decoder_attention_mask=dummy_decoder_attention_mask,
|
|
)
|
|
else:
|
|
_ = model(dummy_input)
|
|
# with attention mask
|
|
_ = model(dummy_input, attention_mask=dummy_attention_mask)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
max_new_tokens = 30
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if 0 not in inputs_dict.get("attention_mask", []) or "attention_mask" not in inputs_dict:
|
|
self.skipTest("Model dummy inputs should contain padding in their attention mask")
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
|
|
dummy_input = dummy_input.to(torch.float16)
|
|
|
|
# make sure that all models have enough positions for generation
|
|
if hasattr(config, "max_position_embeddings"):
|
|
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
|
|
|
|
model = model_class(config)
|
|
if "position_ids" not in inspect.signature(model.forward).parameters:
|
|
self.skipTest("Model does not support position_ids")
|
|
|
|
if "position_ids" not in inspect.signature(model.forward).parameters:
|
|
continue # this model doesn't accept position ids as input
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# ensure left padding, to adapt for some models
|
|
if 0 in inputs_dict["attention_mask"][:, -1]:
|
|
inputs_dict["attention_mask"] = inputs_dict["attention_mask"].flip(1)
|
|
dummy_attention_mask = inputs_dict["attention_mask"]
|
|
inputs_dict["input_ids"][~dummy_attention_mask.bool()] = config.get_text_config().pad_token_id
|
|
|
|
model = (
|
|
model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
.to(torch_device)
|
|
.eval()
|
|
)
|
|
|
|
# flatten
|
|
padfree_inputs_dict = {
|
|
k: v[dummy_attention_mask.bool()].unsqueeze(0)
|
|
for k, v in inputs_dict.items()
|
|
if not k == "attention_mask"
|
|
}
|
|
# add position_ids
|
|
padfree_inputs_dict["position_ids"] = (
|
|
torch.cat([torch.arange(length) for length in dummy_attention_mask.sum(1).tolist()])
|
|
.long()
|
|
.unsqueeze(0)
|
|
.to(torch_device)
|
|
)
|
|
|
|
res_padded = model(**inputs_dict)
|
|
res_padfree = model(**padfree_inputs_dict)
|
|
|
|
logits_padded = res_padded.logits[inputs_dict["attention_mask"].bool()]
|
|
logits_padfree = res_padfree.logits[0]
|
|
|
|
torch.testing.assert_close(logits_padded.argmax(-1), logits_padfree.argmax(-1), rtol=0, atol=0)
|
|
# acceptable numerical instability
|
|
tol = torch.finfo(torch.float16).eps
|
|
torch.testing.assert_close(logits_padded, logits_padfree, rtol=tol, atol=tol)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids_and_fa_kwargs(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
max_new_tokens = 30
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if 0 not in inputs_dict.get("attention_mask", []) or "attention_mask" not in inputs_dict:
|
|
self.skipTest("Model dummy inputs should contain padding in their attention mask")
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
|
|
dummy_input = dummy_input.to(torch.float16)
|
|
|
|
# make sure that all models have enough positions for generation
|
|
if hasattr(config, "max_position_embeddings"):
|
|
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
|
|
|
|
model = model_class(config)
|
|
if "position_ids" not in inspect.signature(model.forward).parameters:
|
|
self.skipTest("Model does not support position_ids")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# ensure left padding, to adapt for some models
|
|
if 0 in inputs_dict["attention_mask"][:, -1]:
|
|
inputs_dict["attention_mask"] = inputs_dict["attention_mask"].flip(1)
|
|
dummy_attention_mask = inputs_dict["attention_mask"]
|
|
inputs_dict["input_ids"][~dummy_attention_mask.bool()] = config.get_text_config().pad_token_id
|
|
|
|
model = (
|
|
model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
.to(torch_device)
|
|
.eval()
|
|
)
|
|
|
|
# flatten
|
|
features = [
|
|
{"input_ids": i[a.bool()].tolist()}
|
|
for i, a in zip(inputs_dict["input_ids"], inputs_dict["attention_mask"])
|
|
]
|
|
|
|
# add position_ids + fa_kwargs
|
|
data_collator = DataCollatorWithFlattening(return_tensors="pt", return_flash_attn_kwargs=True)
|
|
batch = data_collator(features)
|
|
batch_accelerator = {k: t.to(torch_device) if torch.is_tensor(t) else t for k, t in batch.items()}
|
|
|
|
res_padded = model(**inputs_dict)
|
|
res_padfree = model(**batch_accelerator)
|
|
|
|
logits_padded = res_padded.logits[inputs_dict["attention_mask"].bool()]
|
|
logits_padfree = res_padfree.logits[0]
|
|
|
|
torch.testing.assert_close(logits_padded.argmax(-1), logits_padfree.argmax(-1), rtol=0, atol=0)
|
|
# acceptable numerical instability
|
|
tol = torch.finfo(torch.float16).eps
|
|
torch.testing.assert_close(logits_padded, logits_padfree, rtol=tol, atol=tol)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_from_config(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
# TODO: to change it in the future with other relevant auto classes
|
|
fa2_model = model_class._from_config(
|
|
config, attn_implementation="flash_attention_2", torch_dtype=torch.float16
|
|
).to(torch_device)
|
|
|
|
dummy_input = inputs_dict[fa2_model.main_input_name]
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
|
|
dummy_input = dummy_input.to(torch.float16)
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
|
|
|
|
if fa2_model.config.is_encoder_decoder:
|
|
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
|
|
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
|
|
_ = fa2_model(
|
|
dummy_input,
|
|
attention_mask=dummy_attention_mask,
|
|
decoder_input_ids=dummy_decoder_input_ids,
|
|
decoder_attention_mask=dummy_decoder_attention_mask,
|
|
)
|
|
else:
|
|
_ = fa2_model(dummy_input, attention_mask=dummy_attention_mask)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
fa2_model.save_pretrained(tmpdirname)
|
|
model_from_pretrained = model_class.from_pretrained(tmpdirname)
|
|
self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
|
|
|
|
def _get_custom_4d_mask_test_data(self):
|
|
# Sequence in which all but the last token is the same
|
|
input_ids = torch.tensor(
|
|
[[10, 11, 12, 13], [10, 11, 12, 14], [10, 11, 12, 15]], device=torch_device, dtype=torch.int64
|
|
)
|
|
position_ids = torch.tensor([[0, 1, 2, 3]] * 3, device=torch_device, dtype=torch.int64)
|
|
|
|
# Combining common prefix with the unique ending tokens:
|
|
input_ids_shared_prefix = torch.cat([input_ids[0][:-1], input_ids[:, -1]]).unsqueeze(0)
|
|
|
|
# Creating a 4D mask where each of the last 3 tokens do not attend to each other.
|
|
mask_shared_prefix = torch.tensor(
|
|
[
|
|
[
|
|
[
|
|
[1, 0, 0, 0, 0, 0],
|
|
[1, 1, 0, 0, 0, 0],
|
|
[1, 1, 1, 0, 0, 0],
|
|
[1, 1, 1, 1, 0, 0],
|
|
[1, 1, 1, 0, 1, 0],
|
|
[1, 1, 1, 0, 0, 1],
|
|
]
|
|
]
|
|
],
|
|
)
|
|
# inverting the attention mask
|
|
mask_dtype = torch.float32
|
|
min_dtype = torch.finfo(mask_dtype).min
|
|
mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=mask_dtype, device=torch_device) * min_dtype
|
|
|
|
# Creating a position_ids tensor. note the repeating figures in the end.
|
|
position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 3, 3]], device=torch_device, dtype=torch.int64)
|
|
|
|
return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix
|
|
|
|
def test_sliding_window_mask(self):
|
|
"""Tests that we can control the sliding window attention behavior of a model."""
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model does not support output_attentions")
|
|
|
|
if not (hasattr(config, "sliding_window") and hasattr(config, "use_sliding_window")):
|
|
self.skipTest(reason="Model does not support sliding window mask")
|
|
|
|
seq_len = self.model_tester.seq_length
|
|
batch_size = self.model_tester.batch_size
|
|
sliding_window = 3 # set to arbitrary small number
|
|
|
|
sliding_mask = torch.zeros((seq_len, seq_len), dtype=torch.bool)
|
|
for i in range(seq_len):
|
|
start = max(0, i - sliding_window + 1)
|
|
sliding_mask[i, start : i + 1] = True
|
|
sliding_mask = sliding_mask.to(torch_device)
|
|
|
|
config.sliding_window = sliding_window
|
|
inputs["attention_mask"] = torch.ones(batch_size, seq_len).to(torch.int64).to(torch_device)
|
|
for model_class in self.all_model_classes:
|
|
# Set sliding window to `True` and check that all tokens beyond window size are masked
|
|
config.use_sliding_window = True
|
|
config_dict = config.to_diff_dict()
|
|
if hasattr(config, "layer_types"):
|
|
del config_dict["layer_types"]
|
|
new_config = config.__class__(**config_dict)
|
|
# We need to set eager as otherwise `output_attentions` is not supported
|
|
model = model_class._from_config(new_config, attn_implementation="eager").to(torch_device)
|
|
model.eval()
|
|
layer_types = getattr(model.config, "layer_types", ["sliding_attention"] * config.num_hidden_layers)
|
|
attentions = model(**inputs, output_attentions=True).attentions
|
|
for layer_attention, layer_type in zip(attentions, layer_types):
|
|
if layer_type == "sliding_attention":
|
|
self.assertTrue((layer_attention[:, :, ~sliding_mask] == 0).all().item())
|
|
else:
|
|
self.assertFalse((layer_attention[:, :, ~sliding_mask] == 0).all().item())
|
|
|
|
# Set sliding window to `False` while keeping `sliding_window=3`
|
|
# Check that all tokens beyond window size are not masked
|
|
config.use_sliding_window = False
|
|
config_dict = config.to_diff_dict()
|
|
if hasattr(config, "layer_types"):
|
|
del config_dict["layer_types"]
|
|
new_config = config.__class__(**config_dict)
|
|
# We need to set eager as otherwise `output_attentions` is not supported
|
|
model = model_class._from_config(new_config, attn_implementation="eager").to(torch_device)
|
|
model.eval()
|
|
attentions_not_sliding = model(**inputs, output_attentions=True).attentions
|
|
for layer_attention in attentions_not_sliding:
|
|
self.assertFalse((layer_attention[:, :, ~sliding_mask] == 0).all().item())
|
|
|
|
def test_custom_4d_attention_mask(self):
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if len(self.all_generative_model_classes) == 0:
|
|
self.skipTest(
|
|
reason="Model architecture has no generative classes, and thus not necessarily supporting 4D masks"
|
|
)
|
|
|
|
set_model_tester_for_less_flaky_test(self)
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
if not model_class._supports_static_cache:
|
|
self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
set_config_for_less_flaky_test(config)
|
|
if getattr(config, "sliding_window", 0) is not None and getattr(config, "sliding_window", 0) > 0:
|
|
self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
|
|
model = model_class(config).to(device=torch_device, dtype=torch.float32).eval()
|
|
set_model_for_less_flaky_test(model)
|
|
if "position_ids" not in inspect.signature(model.forward).parameters:
|
|
continue # model doesn't accept position ids and probably has special way to model positions
|
|
|
|
if "position_ids" not in inspect.signature(model.forward).parameters:
|
|
continue # this model doesn't accept position ids as input
|
|
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
input_ids_shared_prefix,
|
|
mask_shared_prefix,
|
|
position_ids_shared_prefix,
|
|
) = self._get_custom_4d_mask_test_data()
|
|
|
|
logits = model.forward(input_ids, position_ids=position_ids).logits
|
|
# logits.shape == torch.Size([3, 4, ...])
|
|
|
|
logits_shared_prefix = model(
|
|
input_ids_shared_prefix,
|
|
attention_mask=mask_shared_prefix,
|
|
position_ids=position_ids_shared_prefix,
|
|
)[0]
|
|
# logits_shared_prefix.shape == torch.Size([1, 6, ...])
|
|
|
|
out_last_tokens = logits[:, -1, :] # last tokens in each batch line
|
|
out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :] # last three tokens
|
|
|
|
# comparing softmax-normalized logits:
|
|
normalized_0 = F.softmax(out_last_tokens, dim=-1)
|
|
normalized_1 = F.softmax(out_shared_prefix_last_tokens, dim=-1)
|
|
torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-3)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_torch_compile_for_training(self):
|
|
if version.parse(torch.__version__) < version.parse("2.3"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
if not hasattr(self, "_torch_compile_train_cls"):
|
|
self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_train_cls`.")
|
|
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
cls = self._torch_compile_train_cls
|
|
model = cls(config).to(torch_device)
|
|
|
|
inputs = {
|
|
"input_ids": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
|
|
"attention_mask": torch.tensor(
|
|
[[1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
|
|
dtype=torch.int64,
|
|
device=torch_device,
|
|
),
|
|
"position_ids": torch.arange(0, 10, device=torch_device).unsqueeze(0),
|
|
"labels": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
|
|
}
|
|
|
|
# eager backward
|
|
set_seed(42)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
params = {name: param.grad.detach().to(device="cpu", copy=True) for name, param in model.named_parameters()}
|
|
model.zero_grad()
|
|
del loss
|
|
|
|
model = torch.compile(model, fullgraph=True, mode="reduce-overhead")
|
|
|
|
# forward compilation
|
|
set_seed(42)
|
|
loss = model(**inputs).loss
|
|
# backward compilation
|
|
loss.backward()
|
|
# check grad matches
|
|
for name, param in model._orig_mod.named_parameters():
|
|
torch.testing.assert_close(param.grad.detach().cpu(), params[name], rtol=1e-4, atol=1e-4)
|
|
|
|
def test_forward_with_logits_to_keep(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
if "logits_to_keep" not in set(inspect.signature(model_class.forward).parameters.keys()):
|
|
self.skipTest(reason="This model does not support `logits_to_keep` argument.")
|
|
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
batch_size, sequence_length = inputs["input_ids"].shape[:2]
|
|
vocab_size = config.get_text_config().vocab_size
|
|
model = model_class(config).to(device=torch_device).eval()
|
|
# some models have labels but `logits_to_keep` should not be used in train mode
|
|
_ = inputs.pop("labels", None)
|
|
|
|
# logits_to_keep=0 is a special case meaning "keep all logits"
|
|
all_logits = model(**inputs, logits_to_keep=0).logits
|
|
last_token_logits = model(**inputs, logits_to_keep=1).logits
|
|
|
|
# Assert all shapes are correct
|
|
self.assertEqual(tuple(all_logits.shape), (batch_size, sequence_length, vocab_size))
|
|
self.assertEqual(tuple(last_token_logits.shape), (batch_size, 1, vocab_size))
|
|
|
|
# Assert the last tokens are actually the same (except for the natural fluctuation due to order of FP ops)
|
|
torch.testing.assert_close(all_logits[:, -1:, :], last_token_logits, rtol=1e-5, atol=1e-5)
|
|
|
|
@slow
|
|
@require_torch_greater_or_equal("2.5")
|
|
def test_torch_export(self, config=None, inputs_dict=None, tolerance=1e-4):
|
|
"""
|
|
Test if model can be exported with torch.export.export()
|
|
|
|
Args:
|
|
config (PretrainedConfig):
|
|
Config to use for the model, if None, use default config from model_tester
|
|
inputs_dict (dict):
|
|
Inputs to use for the model, if None, use default inputs from model_tester
|
|
tolerance (float):
|
|
`atol` for torch.allclose(), defined in signature for test overriding
|
|
"""
|
|
if not self.test_torch_exportable:
|
|
self.skipTest(reason="test_torch_exportable=False for this model.")
|
|
|
|
def recursively_check(eager_outputs, exported_outputs):
|
|
is_tested = False
|
|
if isinstance(eager_outputs, torch.Tensor):
|
|
torch.testing.assert_close(eager_outputs, exported_outputs, atol=tolerance, rtol=tolerance)
|
|
return True
|
|
elif isinstance(eager_outputs, (tuple, list)):
|
|
for eager_output, exported_output in zip(eager_outputs, exported_outputs):
|
|
is_tested = is_tested or recursively_check(eager_output, exported_output)
|
|
return is_tested
|
|
elif isinstance(eager_outputs, dict):
|
|
for key in eager_outputs:
|
|
is_tested = is_tested or recursively_check(eager_outputs[key], exported_outputs[key])
|
|
return is_tested
|
|
return is_tested
|
|
|
|
default_config, default_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config = config or default_config
|
|
inputs_dict = inputs_dict or default_inputs_dict
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__.endswith("ForPreTraining"):
|
|
continue
|
|
|
|
with self.subTest(model_class.__name__):
|
|
model = model_class(config).eval().to(torch_device)
|
|
|
|
# Export model
|
|
exported_model = torch.export.export(
|
|
model, args=(), kwargs=inputs_dict, strict=getattr(self, "test_torch_exportable_strictly", True)
|
|
)
|
|
|
|
# Run exported model and eager model
|
|
with torch.no_grad():
|
|
# set seed in case anything is not deterministic in model (e.g. vit_mae noise)
|
|
torch.manual_seed(1234)
|
|
eager_outputs = model(**inputs_dict)
|
|
torch.manual_seed(1234)
|
|
exported_outputs = exported_model.module().forward(**inputs_dict)
|
|
|
|
# Check if outputs are close:
|
|
# is_tested is a boolean flag indicating if we compare any outputs,
|
|
# e.g. there might be a situation when outputs are empty list, then is_tested will be False.
|
|
# In case of outputs are different the error will be raised in `recursively_check` function.
|
|
is_tested = recursively_check(eager_outputs, exported_outputs)
|
|
self.assertTrue(is_tested, msg=f"No outputs were compared for {model_class.__name__}")
|
|
|
|
@require_torch_gpu
|
|
def test_flex_attention_with_grads(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
|
|
model = model_class(config).to(device=torch_device)
|
|
|
|
# If not all sub-models support flex, skip the test
|
|
sub_models_supporting_flex = [
|
|
module._supports_flex_attn
|
|
for name, module in model.named_modules()
|
|
if isinstance(module, PreTrainedModel) and name != ""
|
|
]
|
|
supports_flex_all_modules = (all(sub_models_supporting_flex) and len(sub_models_supporting_flex) > 0) or (
|
|
model._supports_flex_attn and len(sub_models_supporting_flex) == 0
|
|
)
|
|
if not supports_flex_all_modules:
|
|
self.skipTest(reason="This model's submodels does not support flex attention")
|
|
|
|
def update_config_for_flex(config):
|
|
# Flex Attention cannot use dropout
|
|
if hasattr(config, "attention_dropout"):
|
|
config.attention_dropout = 0
|
|
if hasattr(config, "attention_probs_dropout_prob"):
|
|
config.attention_probs_dropout_prob = 0
|
|
|
|
# Flex attention relies on triton on compilation
|
|
# However, triton cannot handle hidden dimensions of less than 16
|
|
# --> forcing at least a hidden dim of 16
|
|
|
|
# Update the head dim and try to update hidden size as well if present in config
|
|
# NOTE: some models may have none if the values in sub-config, thus we check for `Noneness`
|
|
head_dim = None
|
|
if hasattr(config, "head_dim") and config.head_dim is not None:
|
|
head_dim = config.head_dim
|
|
config.head_dim = max(16, config.head_dim)
|
|
|
|
if (
|
|
getattr(config, "hidden_size", None) is not None
|
|
and getattr(config, "num_attention_heads", None) is not None
|
|
):
|
|
head_dim = head_dim if head_dim is not None else config.hidden_size // config.num_attention_heads
|
|
config.hidden_size *= max(16 // head_dim, 1)
|
|
|
|
if (
|
|
getattr(config, "decoder_hidden_size", None) is not None
|
|
and getattr(config, "decoder_num_attention_heads", None) is not None
|
|
):
|
|
decoder_head_dim = config.decoder_hidden_size // config.decoder_num_attention_heads
|
|
config.decoder_hidden_size *= max(16 // decoder_head_dim, 1)
|
|
|
|
# Set default attention to flex and update config values
|
|
update_config_for_flex(config)
|
|
for key in config.sub_configs:
|
|
sub_config = getattr(config, key)
|
|
update_config_for_flex(sub_config)
|
|
|
|
config._attn_implementation = "flex_attention"
|
|
model = model_class(config).to(device=torch_device)
|
|
self.assertTrue(model.config._attn_implementation == "flex_attention")
|
|
|
|
# Elaborate workaround for encoder-decoder models as some do not specify their main input
|
|
dummy_inputs = {model.main_input_name: inputs_dict[model.main_input_name].to(torch_device)}
|
|
for key in getattr(self, "additional_model_inputs", []):
|
|
# Some models don't have all `additional_model_inputs`, especially when we
|
|
# craft cases to test model in different settings
|
|
if key in inputs_dict:
|
|
dummy_inputs[key] = inputs_dict[key].to(torch_device)
|
|
|
|
if config.get_text_config(decoder=True).is_encoder_decoder:
|
|
dummy_inputs["decoder_input_ids"] = inputs_dict["decoder_input_ids"].to(torch_device)
|
|
dummy_inputs["decoder_attention_mask"] = inputs_dict["decoder_attention_mask"].to(torch_device)
|
|
|
|
# If this does not raise an error, the test passes (see https://github.com/huggingface/transformers/pull/35605)
|
|
_ = model(**dummy_inputs)
|
|
|
|
def test_generation_tester_mixin_inheritance(self):
|
|
"""
|
|
Ensures that we have the generation tester mixin if the model can generate. The test will fail otherwise,
|
|
forcing the mixin to be added -- and ensuring proper test coverage
|
|
"""
|
|
if len(self.all_generative_model_classes) > 0:
|
|
self.assertTrue(
|
|
issubclass(self.__class__, GenerationTesterMixin),
|
|
msg=(
|
|
"This model can call `generate` from `GenerationMixin`, so one of two things must happen: 1) the "
|
|
"tester must inherit from `GenerationTesterMixin` to run `generate` tests, or 2) if the model "
|
|
"doesn't fully support the original `generate` or has a custom `generate` with partial feature "
|
|
"support, the tester must overwrite `all_generative_model_classes` to skip the failing classes "
|
|
"(make sure to comment why). If `all_generative_model_classes` is overwritten as `()`, then we "
|
|
"need to remove the `GenerationTesterMixin` inheritance -- no `generate` tests are being run."
|
|
),
|
|
)
|
|
else:
|
|
self.assertFalse(
|
|
issubclass(self.__class__, GenerationTesterMixin),
|
|
msg=(
|
|
"This model can't call `generate`, so its tester can't inherit `GenerationTesterMixin`. (If you "
|
|
"think the model should be able to `generate`, the model may be missing the `GenerationMixin` "
|
|
"inheritance)"
|
|
),
|
|
)
|
|
|
|
def test_can_be_initialized_on_meta(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
# If it does not raise here, the test passes
|
|
with torch.device("meta"):
|
|
_ = model_class(config)
|
|
|
|
@require_torch_accelerator
|
|
def test_can_load_with_device_context_manager(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
# Need to specify index 0 here, as `torch_device` is simply the str of the type, e.g. "cuda"
|
|
device = torch.device(torch_device, index=0)
|
|
for model_class in self.all_model_classes:
|
|
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
|
|
# is not supported for e.g. dpt_hybrid)
|
|
model = model_class(copy.deepcopy(config))
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
with device:
|
|
new_model = model_class.from_pretrained(tmpdirname)
|
|
unique_devices = {param.device for param in new_model.parameters()} | {
|
|
buffer.device for buffer in new_model.buffers()
|
|
}
|
|
|
|
self.assertEqual(
|
|
unique_devices, {device}, f"All parameters should be on {device}, but found {unique_devices}."
|
|
)
|
|
|
|
# Here we need to run with a subprocess as otherwise setting back the default device to the default value ("cpu")
|
|
# may bring unwanted consequences on other tests. See PR #37553
|
|
@run_first
|
|
@run_test_using_subprocess
|
|
@require_torch_accelerator
|
|
def test_can_load_with_global_device_set(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
# Need to specify index 0 here, as `torch_device` is simply the str of the type, e.g. "cuda"
|
|
device = torch.device(torch_device, index=0)
|
|
default_device = torch.get_default_device()
|
|
for model_class in self.all_model_classes:
|
|
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
|
|
# is not supported for e.g. dpt_hybrid)
|
|
model = model_class(copy.deepcopy(config))
|
|
|
|
# set a global gpu device
|
|
torch.set_default_device(device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
new_model = model_class.from_pretrained(tmpdirname)
|
|
unique_devices = {param.device for param in new_model.parameters()} | {
|
|
buffer.device for buffer in new_model.buffers()
|
|
}
|
|
|
|
# set back the correct device
|
|
torch.set_default_device(default_device)
|
|
|
|
self.assertEqual(
|
|
unique_devices, {device}, f"All parameters should be on {device}, but found {unique_devices}."
|
|
)
|
|
|
|
def test_can_load_with_meta_device_context_manager(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
|
|
# is not supported for e.g. dpt_hybrid)
|
|
model = model_class(copy.deepcopy(config))
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
with torch.device("meta"):
|
|
new_model = model_class.from_pretrained(tmpdirname)
|
|
unique_devices = {param.device for param in new_model.parameters()} | {
|
|
buffer.device for buffer in new_model.buffers()
|
|
}
|
|
|
|
self.assertEqual(
|
|
unique_devices,
|
|
{torch.device("meta")},
|
|
f"All parameters should be on meta device, but found {unique_devices}.",
|
|
)
|
|
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None, name=None):
|
|
# Creates a random int32 tensor of the shape within the vocab size
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.randint(0, vocab_size - 1))
|
|
|
|
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
|
|
|
|
|
|
def random_attention_mask(shape, rng=None, name=None):
|
|
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
|
|
# make sure that at least one token is attended to for each batch
|
|
# we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
|
|
attn_mask[:, 0] = 1
|
|
return attn_mask
|
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor"""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.random() * scale)
|
|
|
|
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
|