transformers/examples/modular-transformers/modular_roberta.py
Cyril Vallez e2ac16b28a
Large modular logic refactoring (#34487)
* rework converter

* Update modular_model_converter.py

* Update modular_model_converter.py

* Update modular_model_converter.py

* Update modular_model_converter.py

* cleaning

* cleaning

* finalize imports

* imports

* Update modular_model_converter.py

* Better renaming to avoid visiting same file multiple times

* start converting files

* style

* address most comments

* style

* remove unused stuff in get_needed_imports

* style

* move class dependency functions outside class

* Move main functions outside class

* style

* Update modular_model_converter.py

* rename func

* add augmented dependencies

* Update modular_model_converter.py

* Add types_to_file_type + tweak annotation handling

* Allow assignment dependency mapping + fix regex

* style + update modular examples

* fix modular_roberta example (wrong redefinition of __init__)

* slightly correct order in which dependencies will appear

* style

* review comments

* Performance + better handling of dependencies when they are imported

* style

* Add advanced new classes capabilities

* style

* add forgotten check

* Update modeling_llava_next_video.py

* Add prority list ordering in check_conversion as well

* Update check_modular_conversion.py

* Update configuration_gemma.py
2024-11-01 10:13:51 +01:00

18 lines
527 B
Python

import torch.nn as nn
from transformers.models.bert.modeling_bert import BertEmbeddings, BertModel
class RobertaEmbeddings(BertEmbeddings):
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, config.pad_token_id
)
class RobertaModel(BertModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(self, config)