mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* init * chore: various changes to LightGlue * chore: various changes to LightGlue * chore: various changes to LightGlue * chore: various changes to LightGlue * Fixed dynamo bug and image padding tests * refactor: applied refactoring changes from SuperGlue's concat, batch and stack functions to LightGlue file * tests: removed sdpa support and changed expected values * chore: added some docs and refactoring * chore: fixed copy to superpoint.image_processing_superpoint.convert_to_grayscale * feat: adding batch implementation * feat: added validation for preprocess and post process method to LightGlueImageProcessor * chore: changed convert_lightglue_to_hf script to comply with new standard * chore: changed lightglue test values to match new lightglue config pushed to hub * chore: simplified convert_lightglue_to_hf conversion map * feat: adding batching implementation * chore: make style * feat: added threshold to post_process_keypoint_matching method * fix: added missing instructions that turns keypoints back to absolute coordinate before matching forward * fix: added typehint and docs * chore: make style * [run-slow] lightglue * fix: add matches different from -1 to compute valid matches in post_process_keypoint_matching * tests: added CUDA proof tests similar to SuperGlue * chore: various changes to modeling_lightglue.py - Added "Copies from" statements for copied functions from modeling_superglue.py - Added missing docstrings - Removed unused functions or classes - Removed unnecessary statements - Added missing typehints - Added comments to the main forward method * chore: various changes to convert_lightglue_to_hf.py - Added model saving - Added model reloading * chore: fixed imports in lightglue files * [run-slow] lightglue * chore: make style * [run-slow] lightglue * Apply suggestions from code review Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * [run-slow] lightglue * chore: Applied some suggestions from review - Added missing typehints - Refactor "cuda" to device variable - Variable renaming - LightGlue output order changed - Make style * fix: added missing grayscale argument in image processor in case use of SuperPoint keypoint detector * fix: changed lightglue HF repo to lightglue_superpoint with grayscale default to True * refactor: make keypoints `(batch_size, num_keypoints, keypoint_dim)` through forward and unsqueeze only before attention layer * refactor: refactor do_layer_keypoint_pruning * tests: added tests with no early stop and keypoint pruning * refactor: various refactoring to modeling_lightglue.py - Removed unused functions - Renamed variables for consistency - Added comments for clarity - Set methods to private in LightGlueForKeypointMatching - Replaced tensor initialization to list then concatenation - Used more pythonic list comprehension for repetitive instructions * refactor: added comments and renamed filter_matches to get_matches_from_scores * tests: added copied from statement with superglue tests * docs: added comment to prepare_keypoint_matching_output function in tests * [run-slow] lightglue * refactor: reordered _concat_early_stopped_outputs in LightGlue class * [run-slow] lightglue * docs: added lightglue.md model doc * docs: added Optional typehint to LightGlueKeypointMatchingOutput * chore: removed pad_images function * chore: set do_grayscale default value to True in LightGlueImageProcessor * Apply suggestions from code review Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Apply suggestions from code review Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * docs: added missing LightGlueConfig typehint in nn.Module __init__ methods * docs: removed unnecessary code in docs * docs: import SuperPointConfig only from a TYPE_CHECKING context * chore: use PretrainedConfig arguments `num_hidden_layers` and `num_attention_heads` instead of `num_layers` and `num_heads` * chore: added organization as arg in convert_lightglue_to_hf.py script * refactor: set device variable * chore: added "gelu" in LightGlueConfig as hidden_act parameter * docs: added comments to reshape.flip.reshape instruction to perform cross attention * refactor: used batched inference for keypoint detector forward pass * fix: added fix for SDPA tests * docs: fixed docstring for LightGlueImageProcessor * [run-slow] lightglue * refactor: removed unused line * refactor: added missing arguments in LightGlueConfig init method * docs: added missing LightGlueConfig typehint in init methods * refactor: added checkpoint url as default variable to verify models output only if it is the default url * fix: moved print message inside if statement * fix: added log assignment r removal in convert script * fix: got rid of confidence_thresholds as registered buffers * refactor: applied suggestions from SuperGlue PR * docs: changed copyright to 2025 * refactor: modular LightGlue * fix: removed unnecessary import * feat: added plot_keypoint_matching method to LightGlueImageProcessor with matplotlib soft dependency * fix: added missing import error for matplotlib * Updated convert script to push on ETH org * fix: added missing licence * fix: make fix-copies * refactor: use cohere apply_rotary_pos_emb function * fix: update model references to use ETH-CVG/lightglue_superpoint * refactor: add and use intermediate_size attribute in config to inherit CLIPMLP for LightGlueMLP * refactor: explicit variables instead of slicing * refactor: use can_return_tuple decorator in LightGlue model * fix: make fix-copies * docs: Update model references in `lightglue.md` to use the correct pretrained model from ETH-CVG * Refactor LightGlue configuration and processing classes - Updated type hints for `keypoint_detector_config` in `LightGlueConfig` to use `SuperPointConfig` directly. - Changed `size` parameter in `LightGlueImageProcessor` to be optional. - Modified `position_embeddings` in `LightGlueAttention` and `LightGlueAttentionBlock` to be optional tuples. - Cleaned up import statements across multiple files for better readability and consistency. * refactor: Update LightGlue configuration to enforce eager attention implementation - Added `attn_implementation="eager"` to `keypoint_detector_config` in `LightGlueConfig` and `LightGlueAttention` classes. - Removed unnecessary logging related to attention implementation fallback. - Cleaned up import statements for better readability. * refactor: renamed message into attention_output * fix: ensure device compatibility in LightGlueMatchAssignmentLayer descriptor normalization - Updated the normalization of `m_descriptors` to use the correct device for the tensor, ensuring compatibility across different hardware setups. * refactor: removed Conv layers from init_weights since LightGlue doesn't have any * refactor: replace add_start_docstrings with auto_docstring in LightGlue models - Updated LightGlue model classes to utilize the new auto_docstring utility for automatic documentation generation. - Removed legacy docstring handling to streamline the code and improve maintainability. * refactor: simplify LightGlue image processing tests by inheriting from SuperGlue - Refactored `LightGlueImageProcessingTester` and `LightGlueImageProcessingTest` to inherit from their SuperGlue counterparts, reducing code duplication. - Removed redundant methods and properties, streamlining the test setup and improving maintainability. * test: forced eager attention implementation to LightGlue model tests - Updated `LightGlueModelTester` to include `attn_implementation="eager"` in the model configuration. - This change aligns the test setup with the recent updates in LightGlue configuration for eager attention. * refactor: update LightGlue model references * fix: import error * test: enhance LightGlue image processing tests with setup method - Added a setup method in `LightGlueImageProcessingTest` to initialize `LightGlueImageProcessingTester`. - Included a docstring for `LightGlueImageProcessingTester` to clarify its purpose. * refactor: added LightGlue image processing implementation to modular file * refactor: moved attention blocks into the transformer layer * fix: added missing import * fix: added missing import in __all__ variable * doc: added comment about enforcing eager attention because of SuperPoint * refactor: added SuperPoint eager attention comment and moved functions to the closest they are used --------- Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com> Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
585 lines
25 KiB
Python
585 lines
25 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import inspect
|
|
import unittest
|
|
|
|
from datasets import load_dataset
|
|
|
|
from transformers.models.lightglue.configuration_lightglue import LightGlueConfig
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import LightGlueForKeypointMatching
|
|
|
|
if is_vision_available():
|
|
from transformers import AutoImageProcessor
|
|
|
|
|
|
class LightGlueModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
image_width=80,
|
|
image_height=60,
|
|
keypoint_detector_config={
|
|
"encoder_hidden_sizes": [32, 32, 64],
|
|
"decoder_hidden_size": 64,
|
|
"keypoint_decoder_dim": 65,
|
|
"descriptor_decoder_dim": 64,
|
|
"keypoint_threshold": 0.005,
|
|
"max_keypoints": 256,
|
|
"nms_radius": 4,
|
|
"border_removal_distance": 4,
|
|
},
|
|
descriptor_dim: int = 64,
|
|
num_layers: int = 2,
|
|
num_heads: int = 4,
|
|
depth_confidence: float = 1.0,
|
|
width_confidence: float = 1.0,
|
|
filter_threshold: float = 0.1,
|
|
matching_threshold: float = 0.0,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
|
|
self.keypoint_detector_config = keypoint_detector_config
|
|
self.descriptor_dim = descriptor_dim
|
|
self.num_layers = num_layers
|
|
self.num_heads = num_heads
|
|
self.depth_confidence = depth_confidence
|
|
self.width_confidence = width_confidence
|
|
self.filter_threshold = filter_threshold
|
|
self.matching_threshold = matching_threshold
|
|
|
|
def prepare_config_and_inputs(self):
|
|
# LightGlue expects a grayscale image as input
|
|
pixel_values = floats_tensor([self.batch_size, 2, 3, self.image_height, self.image_width])
|
|
config = self.get_config()
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return LightGlueConfig(
|
|
keypoint_detector_config=self.keypoint_detector_config,
|
|
descriptor_dim=self.descriptor_dim,
|
|
num_hidden_layers=self.num_layers,
|
|
num_attention_heads=self.num_heads,
|
|
depth_confidence=self.depth_confidence,
|
|
width_confidence=self.width_confidence,
|
|
filter_threshold=self.filter_threshold,
|
|
matching_threshold=self.matching_threshold,
|
|
attn_implementation="eager",
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = LightGlueForKeypointMatching(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
maximum_num_matches = result.mask.shape[-1]
|
|
self.parent.assertEqual(
|
|
result.keypoints.shape,
|
|
(self.batch_size, 2, maximum_num_matches, 2),
|
|
)
|
|
self.parent.assertEqual(
|
|
result.matches.shape,
|
|
(self.batch_size, 2, maximum_num_matches),
|
|
)
|
|
self.parent.assertEqual(
|
|
result.matching_scores.shape,
|
|
(self.batch_size, 2, maximum_num_matches),
|
|
)
|
|
self.parent.assertEqual(
|
|
result.prune.shape,
|
|
(self.batch_size, 2, maximum_num_matches),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class LightGlueModelTest(ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (LightGlueForKeypointMatching,) if is_torch_available() else ()
|
|
all_generative_model_classes = () if is_torch_available() else ()
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
has_attentions = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = LightGlueModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=LightGlueConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching does not support input and output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching does not use feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching is not trainable")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlueForKeypointMatching is not trainable")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="LightGlue does not output any loss term in the forward pass")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
maximum_num_matches = outputs.mask.shape[-1]
|
|
|
|
hidden_states_sizes = [
|
|
self.model_tester.descriptor_dim,
|
|
self.model_tester.descriptor_dim,
|
|
self.model_tester.descriptor_dim * 2,
|
|
self.model_tester.descriptor_dim,
|
|
self.model_tester.descriptor_dim,
|
|
self.model_tester.descriptor_dim * 2,
|
|
self.model_tester.descriptor_dim,
|
|
] * self.model_tester.num_layers
|
|
|
|
for i, hidden_states_size in enumerate(hidden_states_sizes):
|
|
self.assertListEqual(
|
|
list(hidden_states[i].shape[-2:]),
|
|
[maximum_num_matches, hidden_states_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_attention_outputs(self):
|
|
def check_attention_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
attentions = outputs.attentions
|
|
maximum_num_matches = outputs.mask.shape[-1]
|
|
|
|
expected_attention_shape = [self.model_tester.num_heads, maximum_num_matches, maximum_num_matches]
|
|
|
|
for i, attention in enumerate(attentions):
|
|
self.assertListEqual(
|
|
list(attention.shape[-3:]),
|
|
expected_attention_shape,
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
check_attention_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
|
|
check_attention_output(inputs_dict, config, model_class)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
from_pretrained_ids = ["ETH-CVG/lightglue_superpoint"]
|
|
for model_name in from_pretrained_ids:
|
|
model = LightGlueForKeypointMatching.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
# Copied from tests.models.superglue.test_modeling_superglue.SuperGlueModelTest.test_forward_labels_should_be_none
|
|
def test_forward_labels_should_be_none(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
model_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
# Provide an arbitrary sized Tensor as labels to model inputs
|
|
model_inputs["labels"] = torch.rand((128, 128))
|
|
|
|
with self.assertRaises(ValueError) as cm:
|
|
model(**model_inputs)
|
|
self.assertEqual(ValueError, cm.exception.__class__)
|
|
|
|
|
|
def prepare_imgs():
|
|
dataset = load_dataset("hf-internal-testing/image-matching-test-dataset", split="train")
|
|
image0 = dataset[0]["image"]
|
|
image1 = dataset[1]["image"]
|
|
image2 = dataset[2]["image"]
|
|
# [image1, image1] on purpose to test the model early stopping
|
|
return [[image2, image0], [image1, image1]]
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class LightGlueModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference(self):
|
|
model = LightGlueForKeypointMatching.from_pretrained(
|
|
"ETH-CVG/lightglue_superpoint", attn_implementation="eager"
|
|
).to(torch_device)
|
|
preprocessor = self.default_image_processor
|
|
images = prepare_imgs()
|
|
inputs = preprocessor(images=images, return_tensors="pt").to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, output_hidden_states=True, output_attentions=True)
|
|
|
|
predicted_number_of_matches0 = torch.sum(outputs.matches[0][0] != -1).item()
|
|
predicted_matches_values0 = outputs.matches[0, 0, 10:30]
|
|
predicted_matching_scores_values0 = outputs.matching_scores[0, 0, 10:30]
|
|
|
|
predicted_number_of_matches1 = torch.sum(outputs.matches[1][0] != -1).item()
|
|
predicted_matches_values1 = outputs.matches[1, 0, 10:30]
|
|
predicted_matching_scores_values1 = outputs.matching_scores[1, 0, 10:30]
|
|
|
|
expected_number_of_matches0 = 140
|
|
expected_matches_values0 = torch.tensor(
|
|
[14, -1, -1, 15, 17, 13, -1, -1, -1, -1, -1, -1, 5, -1, -1, 19, -1, 10, -1, 11],
|
|
dtype=torch.int64,
|
|
device=torch_device,
|
|
)
|
|
expected_matching_scores_values0 = torch.tensor(
|
|
[0.3796, 0, 0, 0.3772, 0.4439, 0.2411, 0, 0, 0.0032, 0, 0, 0, 0.2997, 0, 0, 0.6762, 0, 0.8826, 0, 0.5583],
|
|
device=torch_device,
|
|
)
|
|
|
|
expected_number_of_matches1 = 866
|
|
expected_matches_values1 = torch.tensor(
|
|
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
|
|
dtype=torch.int64,
|
|
device=torch_device,
|
|
)
|
|
expected_matching_scores_values1 = torch.tensor(
|
|
[
|
|
0.6188,0.7817,0.5686,0.9353,0.9801,0.9193,0.8632,0.9111,0.9821,0.5496,
|
|
0.9906,0.8682,0.9679,0.9914,0.9318,0.1910,0.9669,0.3240,0.9971,0.9923,
|
|
],
|
|
device=torch_device
|
|
) # fmt:skip
|
|
|
|
# expected_early_stopping_layer = 2
|
|
# predicted_early_stopping_layer = torch.max(outputs.prune[1]).item()
|
|
# self.assertEqual(predicted_early_stopping_layer, expected_early_stopping_layer)
|
|
# self.assertEqual(predicted_number_of_matches, expected_second_number_of_matches)
|
|
|
|
"""
|
|
Because of inconsistencies introduced between CUDA versions, the checks here are less strict. SuperGlue relies
|
|
on SuperPoint, which may, depending on CUDA version, return different number of keypoints (866 or 867 in this
|
|
specific test example). The consequence of having different number of keypoints is that the number of matches
|
|
will also be different. In the 20 first matches being checked, having one keypoint less will result in 1 less
|
|
match. The matching scores will also be different, as the keypoints are different. The checks here are less
|
|
strict to account for these inconsistencies.
|
|
Therefore, the test checks that the predicted number of matches, matches and matching scores are close to the
|
|
expected values, individually. Here, the tolerance of the number of values changing is set to 2.
|
|
|
|
This was discussed [here](https://github.com/huggingface/transformers/pull/29886#issuecomment-2482752787)
|
|
Such CUDA inconsistencies can be found
|
|
[here](https://github.com/huggingface/transformers/pull/33200/files#r1785980300)
|
|
"""
|
|
|
|
self.assertTrue(abs(predicted_number_of_matches0 - expected_number_of_matches0) < 4)
|
|
self.assertTrue(abs(predicted_number_of_matches1 - expected_number_of_matches1) < 4)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values0, expected_matching_scores_values0, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values1, expected_matching_scores_values1, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(torch.sum(predicted_matches_values0 != expected_matches_values0) < 4)
|
|
self.assertTrue(torch.sum(predicted_matches_values1 != expected_matches_values1) < 4)
|
|
|
|
@slow
|
|
def test_inference_without_early_stop(self):
|
|
model = LightGlueForKeypointMatching.from_pretrained(
|
|
"ETH-CVG/lightglue_superpoint", attn_implementation="eager", depth_confidence=1.0
|
|
).to(torch_device)
|
|
preprocessor = self.default_image_processor
|
|
images = prepare_imgs()
|
|
inputs = preprocessor(images=images, return_tensors="pt").to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, output_hidden_states=True, output_attentions=True)
|
|
|
|
predicted_number_of_matches0 = torch.sum(outputs.matches[0][0] != -1).item()
|
|
predicted_matches_values0 = outputs.matches[0, 0, 10:30]
|
|
predicted_matching_scores_values0 = outputs.matching_scores[0, 0, 10:30]
|
|
|
|
predicted_number_of_matches1 = torch.sum(outputs.matches[1][0] != -1).item()
|
|
predicted_matches_values1 = outputs.matches[1, 0, 10:30]
|
|
predicted_matching_scores_values1 = outputs.matching_scores[1, 0, 10:30]
|
|
|
|
expected_number_of_matches0 = 134
|
|
expected_matches_values0 = torch.tensor(
|
|
[-1, -1, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 19, -1, 10, -1, 11], dtype=torch.int64
|
|
).to(torch_device)
|
|
expected_matching_scores_values0 = torch.tensor(
|
|
[0.0083, 0, 0.2022, 0.0621, 0, 0.0828, 0, 0, 0.0003, 0, 0, 0, 0.0960, 0, 0, 0.6940, 0, 0.7167, 0, 0.1512]
|
|
).to(torch_device)
|
|
|
|
expected_number_of_matches1 = 862
|
|
expected_matches_values1 = torch.tensor(
|
|
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], dtype=torch.int64
|
|
).to(torch_device)
|
|
expected_matching_scores_values1 = torch.tensor(
|
|
[
|
|
0.4772,
|
|
0.3781,
|
|
0.0631,
|
|
0.9559,
|
|
0.8746,
|
|
0.9271,
|
|
0.4882,
|
|
0.5406,
|
|
0.9439,
|
|
0.1526,
|
|
0.5028,
|
|
0.4107,
|
|
0.5591,
|
|
0.9130,
|
|
0.7572,
|
|
0.0302,
|
|
0.4532,
|
|
0.0893,
|
|
0.9490,
|
|
0.4880,
|
|
]
|
|
).to(torch_device)
|
|
|
|
# expected_early_stopping_layer = 2
|
|
# predicted_early_stopping_layer = torch.max(outputs.prune[1]).item()
|
|
# self.assertEqual(predicted_early_stopping_layer, expected_early_stopping_layer)
|
|
# self.assertEqual(predicted_number_of_matches, expected_second_number_of_matches)
|
|
|
|
"""
|
|
Because of inconsistencies introduced between CUDA versions, the checks here are less strict. SuperGlue relies
|
|
on SuperPoint, which may, depending on CUDA version, return different number of keypoints (866 or 867 in this
|
|
specific test example). The consequence of having different number of keypoints is that the number of matches
|
|
will also be different. In the 20 first matches being checked, having one keypoint less will result in 1 less
|
|
match. The matching scores will also be different, as the keypoints are different. The checks here are less
|
|
strict to account for these inconsistencies.
|
|
Therefore, the test checks that the predicted number of matches, matches and matching scores are close to the
|
|
expected values, individually. Here, the tolerance of the number of values changing is set to 2.
|
|
|
|
This was discussed [here](https://github.com/huggingface/transformers/pull/29886#issuecomment-2482752787)
|
|
Such CUDA inconsistencies can be found
|
|
[here](https://github.com/huggingface/transformers/pull/33200/files#r1785980300)
|
|
"""
|
|
|
|
self.assertTrue(abs(predicted_number_of_matches0 - expected_number_of_matches0) < 4)
|
|
self.assertTrue(abs(predicted_number_of_matches1 - expected_number_of_matches1) < 4)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values0, expected_matching_scores_values0, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values1, expected_matching_scores_values1, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(torch.sum(predicted_matches_values0 != expected_matches_values0) < 4)
|
|
self.assertTrue(torch.sum(predicted_matches_values1 != expected_matches_values1) < 4)
|
|
|
|
@slow
|
|
def test_inference_without_early_stop_and_keypoint_pruning(self):
|
|
model = LightGlueForKeypointMatching.from_pretrained(
|
|
"ETH-CVG/lightglue_superpoint",
|
|
attn_implementation="eager",
|
|
depth_confidence=1.0,
|
|
width_confidence=1.0,
|
|
).to(torch_device)
|
|
preprocessor = self.default_image_processor
|
|
images = prepare_imgs()
|
|
inputs = preprocessor(images=images, return_tensors="pt").to(torch_device)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, output_hidden_states=True, output_attentions=True)
|
|
|
|
predicted_number_of_matches0 = torch.sum(outputs.matches[0][0] != -1).item()
|
|
predicted_matches_values0 = outputs.matches[0, 0, 10:30]
|
|
predicted_matching_scores_values0 = outputs.matching_scores[0, 0, 10:30]
|
|
|
|
predicted_number_of_matches1 = torch.sum(outputs.matches[1][0] != -1).item()
|
|
predicted_matches_values1 = outputs.matches[1, 0, 10:30]
|
|
predicted_matching_scores_values1 = outputs.matching_scores[1, 0, 10:30]
|
|
|
|
expected_number_of_matches0 = 144
|
|
expected_matches_values0 = torch.tensor(
|
|
[-1, -1, 17, -1, -1, 13, -1, -1, -1, -1, -1, -1, 5, -1, -1, 19, -1, 10, -1, 11], dtype=torch.int64
|
|
).to(torch_device)
|
|
expected_matching_scores_values0 = torch.tensor(
|
|
[
|
|
0.0699,
|
|
0.0302,
|
|
0.3356,
|
|
0.0820,
|
|
0,
|
|
0.2266,
|
|
0,
|
|
0,
|
|
0.0241,
|
|
0,
|
|
0,
|
|
0,
|
|
0.1674,
|
|
0,
|
|
0,
|
|
0.8114,
|
|
0,
|
|
0.8120,
|
|
0,
|
|
0.2936,
|
|
]
|
|
).to(torch_device)
|
|
|
|
expected_number_of_matches1 = 862
|
|
expected_matches_values1 = torch.tensor(
|
|
[10, 11, -1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, -1, 26, -1, 28, 29], dtype=torch.int64
|
|
).to(torch_device)
|
|
expected_matching_scores_values1 = torch.tensor(
|
|
[
|
|
0.4772,
|
|
0.3781,
|
|
0.0631,
|
|
0.9559,
|
|
0.8746,
|
|
0.9271,
|
|
0.4882,
|
|
0.5406,
|
|
0.9439,
|
|
0.1526,
|
|
0.5028,
|
|
0.4107,
|
|
0.5591,
|
|
0.9130,
|
|
0.7572,
|
|
0.0302,
|
|
0.4532,
|
|
0.0893,
|
|
0.9490,
|
|
0.4880,
|
|
]
|
|
).to(torch_device)
|
|
|
|
# expected_early_stopping_layer = 2
|
|
# predicted_early_stopping_layer = torch.max(outputs.prune[1]).item()
|
|
# self.assertEqual(predicted_early_stopping_layer, expected_early_stopping_layer)
|
|
# self.assertEqual(predicted_number_of_matches, expected_second_number_of_matches)
|
|
|
|
"""
|
|
Because of inconsistencies introduced between CUDA versions, the checks here are less strict. SuperGlue relies
|
|
on SuperPoint, which may, depending on CUDA version, return different number of keypoints (866 or 867 in this
|
|
specific test example). The consequence of having different number of keypoints is that the number of matches
|
|
will also be different. In the 20 first matches being checked, having one keypoint less will result in 1 less
|
|
match. The matching scores will also be different, as the keypoints are different. The checks here are less
|
|
strict to account for these inconsistencies.
|
|
Therefore, the test checks that the predicted number of matches, matches and matching scores are close to the
|
|
expected values, individually. Here, the tolerance of the number of values changing is set to 2.
|
|
|
|
This was discussed [here](https://github.com/huggingface/transformers/pull/29886#issuecomment-2482752787)
|
|
Such CUDA inconsistencies can be found
|
|
[here](https://github.com/huggingface/transformers/pull/33200/files#r1785980300)
|
|
"""
|
|
|
|
self.assertTrue(abs(predicted_number_of_matches0 - expected_number_of_matches0) < 4)
|
|
self.assertTrue(abs(predicted_number_of_matches1 - expected_number_of_matches1) < 4)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values0, expected_matching_scores_values0, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(
|
|
torch.sum(~torch.isclose(predicted_matching_scores_values1, expected_matching_scores_values1, atol=1e-2))
|
|
< 4
|
|
)
|
|
self.assertTrue(torch.sum(predicted_matches_values0 != expected_matches_values0) < 4)
|
|
self.assertTrue(torch.sum(predicted_matches_values1 != expected_matches_values1) < 4)
|