mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* VLMs can work with embeds now * update more models * fix tests * fix copies * fixup * fix * style * unskip tests * fix copies * fix tests * style * omni modality models * qwen models had extra indentation * fix some other tests * fix copies * fix test last time * unrelated changes revert * we can't rely only on embeds * delete file * de-flake mistral3 * fix qwen models * fix style * fix tests * fix copies * deflake the test * modular reverted by fixes, fix again * flaky test, overwritten * fix copies * style
779 lines
32 KiB
Python
779 lines
32 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch InstructBlipVideo model."""
|
|
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
InstructBlipVideoConfig,
|
|
InstructBlipVideoProcessor,
|
|
InstructBlipVideoQFormerConfig,
|
|
InstructBlipVideoVisionConfig,
|
|
)
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_sdpa,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_available
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
random_attention_mask,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import (
|
|
InstructBlipVideoForConditionalGeneration,
|
|
InstructBlipVideoModel,
|
|
InstructBlipVideoVisionModel,
|
|
)
|
|
|
|
|
|
class InstructBlipVideoVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
frames=4,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=1e-10,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.frames = frames
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[self.batch_size * self.frames, self.num_channels, self.image_size, self.image_size]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return InstructBlipVideoVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = InstructBlipVideoVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size * self.frames, num_patches + 1, self.hidden_size)
|
|
)
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.frames, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class InstructBlipVideoVisionModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBlipVideo's vision encoder does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (InstructBlipVideoVisionModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = InstructBlipVideoVisionModelTester(self)
|
|
common_properties = ["num_query_tokens", "video_token_index"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="InstructBlipVideo's vision encoder does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVideo's vision encoder is an nn.Embeddings layer")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(
|
|
reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
|
|
)
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "Salesforce/instructblip-vicuna-7b"
|
|
model = InstructBlipVideoVisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
class InstructBlipVideoQFormerModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
bos_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
self.bos_token_id = bos_token_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
if input_mask is not None:
|
|
batch_size, seq_length = input_mask.shape
|
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
|
for batch_idx, start_index in enumerate(rnd_start_indices):
|
|
input_mask[batch_idx, :start_index] = 1
|
|
input_mask[batch_idx, start_index:] = 0
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
|
|
|
|
def get_config(self):
|
|
return InstructBlipVideoQFormerConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
bos_token_id=self.bos_token_id,
|
|
)
|
|
|
|
|
|
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
|
|
class InstructBlipVideoTextModelDecoderOnlyTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=100,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
embed_dim=16,
|
|
num_labels=3,
|
|
word_embed_proj_dim=16,
|
|
type_sequence_label_size=2,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.embed_dim = embed_dim
|
|
self.num_labels = num_labels
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.word_embed_proj_dim = word_embed_proj_dim
|
|
self.is_encoder_decoder = False
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
|
|
input_ids[:, -1] = self.eos_token_id # Eos Token
|
|
|
|
attention_mask = input_ids.ne(self.pad_token_id)
|
|
|
|
return config, input_ids, attention_mask
|
|
|
|
def get_config(self):
|
|
return CONFIG_MAPPING["opt"](
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
embed_dim=self.embed_dim,
|
|
is_encoder_decoder=False,
|
|
word_embed_proj_dim=self.word_embed_proj_dim,
|
|
)
|
|
|
|
|
|
# this model tester uses a decoder-only language model (OPT)
|
|
class InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
vision_kwargs=None,
|
|
qformer_kwargs=None,
|
|
text_kwargs=None,
|
|
is_training=True,
|
|
num_query_tokens=10,
|
|
video_token_index=4,
|
|
):
|
|
if vision_kwargs is None:
|
|
vision_kwargs = {}
|
|
if qformer_kwargs is None:
|
|
qformer_kwargs = {}
|
|
if text_kwargs is None:
|
|
text_kwargs = {}
|
|
|
|
self.parent = parent
|
|
self.vision_model_tester = InstructBlipVideoVisionModelTester(parent, **vision_kwargs)
|
|
self.qformer_model_tester = InstructBlipVideoQFormerModelTester(parent, **qformer_kwargs)
|
|
self.text_model_tester = InstructBlipVideoTextModelDecoderOnlyTester(parent, **text_kwargs)
|
|
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
|
|
self.frames = self.vision_model_tester.frames
|
|
# need seq_length for common tests
|
|
self.seq_length = self.text_model_tester.seq_length + (num_query_tokens * self.frames)
|
|
self.is_training = is_training
|
|
self.num_query_tokens = num_query_tokens
|
|
self.video_token_index = video_token_index
|
|
|
|
def prepare_config_and_inputs(self):
|
|
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
|
|
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
|
_, c, h, w = pixel_values.shape
|
|
pixel_values = pixel_values.reshape(-1, self.frames, c, h, w)
|
|
|
|
vision_tokens = (
|
|
torch.ones(
|
|
(input_ids.shape[0], self.num_query_tokens * self.frames), device=torch_device, dtype=input_ids.dtype
|
|
)
|
|
* self.video_token_index
|
|
)
|
|
input_ids[input_ids == self.video_token_index] = self.text_model_tester.pad_token_id
|
|
input_ids = torch.cat([vision_tokens, input_ids], dim=-1)
|
|
vision_attention_mask = torch.ones_like(vision_tokens)
|
|
attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
|
|
|
|
def get_config(self):
|
|
return InstructBlipVideoConfig.from_vision_qformer_text_configs(
|
|
vision_config=self.vision_model_tester.get_config(),
|
|
qformer_config=self.qformer_model_tester.get_config(),
|
|
text_config=self.text_model_tester.get_config(),
|
|
num_query_tokens=self.num_query_tokens,
|
|
video_token_index=self.video_token_index,
|
|
)
|
|
|
|
def create_and_check_for_conditional_generation(
|
|
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
|
|
):
|
|
model = InstructBlipVideoForConditionalGeneration(config).to(torch_device).eval()
|
|
with torch.no_grad():
|
|
result = model(
|
|
pixel_values,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
qformer_input_ids=qformer_input_ids,
|
|
qformer_attention_mask=qformer_attention_mask,
|
|
)
|
|
|
|
expected_seq_length = (
|
|
self.num_query_tokens * self.vision_model_tester.frames
|
|
) + self.text_model_tester.seq_length
|
|
self.parent.assertEqual(
|
|
result.logits.shape,
|
|
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"qformer_input_ids": qformer_input_ids,
|
|
"qformer_attention_mask": qformer_attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class InstructBlipVideoForConditionalGenerationDecoderOnlyTest(
|
|
ModelTesterMixin, GenerationTesterMixin, unittest.TestCase
|
|
):
|
|
all_model_classes = (
|
|
(InstructBlipVideoForConditionalGeneration, InstructBlipVideoModel) if is_torch_available() else ()
|
|
)
|
|
additional_model_inputs = ["qformer_input_ids", "input_ids"]
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_attention_outputs = False
|
|
test_torchscript = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester(self)
|
|
common_properties = ["num_query_tokens", "video_token_index"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_for_conditional_generation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVideoForConditionalGeneration doesn't support inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Tied weights are tested in individual model tests")
|
|
def test_tied_weights_keys(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVideoModel does not have input/output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_load_vision_qformer_text_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# Save InstructBlipVideoConfig and check if we can load InstructBlipVideoVisionConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
vision_config = InstructBlipVideoVisionConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
|
|
|
# Save InstructBlipVideoConfig and check if we can load InstructBlipVideoQFormerConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
qformer_config = InstructBlipVideoQFormerConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "Salesforce/instructblip-vicuna-7b"
|
|
model = InstructBlipVideoForConditionalGeneration.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
# overwrite because InstructBLIPVideo internally calls LM.generate() with embeds thus it cannot operate in no cache format
|
|
def _check_generate_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1):
|
|
use_cache = True # force this to be True in case False is passed
|
|
super()._check_generate_outputs(
|
|
output, config, use_cache=use_cache, num_return_sequences=num_return_sequences, num_beams=num_beams
|
|
)
|
|
|
|
# overwrite because InstructBLIPVideo cannot generate only from input ids, and requires `pixel` values and `qformer_input_ids` in all cases to be present
|
|
@pytest.mark.generate
|
|
def test_left_padding_compatibility(self):
|
|
# NOTE: left-padding results in small numerical differences. This is expected.
|
|
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
|
|
|
|
# First, filter out models that don't support left padding
|
|
# - The model must have generative capabilities
|
|
if len(self.all_generative_model_classes) == 0:
|
|
self.skipTest(reason="No generative architecture available for this model.")
|
|
|
|
# - The model must support padding
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="This model doesn't support padding.")
|
|
|
|
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
|
|
decoder_only_classes = []
|
|
for model_class in self.all_generative_model_classes:
|
|
config, _ = self.prepare_config_and_inputs_for_generate()
|
|
if config.is_encoder_decoder:
|
|
continue
|
|
else:
|
|
decoder_only_classes.append(model_class)
|
|
if len(decoder_only_classes) == 0:
|
|
self.skipTest(reason="No decoder-only architecture available for this model.")
|
|
|
|
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
|
|
# added support for it yet. We skip these models for now.
|
|
has_encoder_attributes = any(
|
|
attr_name
|
|
for attr_name in config.to_dict().keys()
|
|
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
|
|
)
|
|
if has_encoder_attributes:
|
|
self.skipTest(
|
|
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
|
|
)
|
|
|
|
# Then, test left-padding
|
|
def _prepare_model_kwargs(input_ids, attention_mask, signature):
|
|
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
if "position_ids" in signature:
|
|
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
model_kwargs["position_ids"] = position_ids
|
|
if "cache_position" in signature:
|
|
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
|
|
model_kwargs["cache_position"] = cache_position
|
|
return model_kwargs
|
|
|
|
for model_class in decoder_only_classes:
|
|
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
|
|
input_ids = inputs_dict["input_ids"]
|
|
attention_mask = inputs_dict.get("attention_mask")
|
|
pixel_values = inputs_dict["pixel_values"]
|
|
qformer_input_ids = inputs_dict["qformer_input_ids"]
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
model = model_class(config).to(torch_device).eval()
|
|
signature = inspect.signature(model.forward).parameters.keys()
|
|
|
|
# no cache as some models require special cache classes to be init outside forward
|
|
model.generation_config.use_cache = False
|
|
|
|
# Without padding
|
|
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
|
|
next_logits_wo_padding = model(
|
|
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
|
|
).logits[:, -1, :]
|
|
|
|
# With left-padding (length 32)
|
|
# can hardcode pad_token to be 0 as we'll do attn masking anyway
|
|
pad_token_id = (
|
|
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
|
|
)
|
|
pad_size = (input_ids.shape[0], 32)
|
|
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
|
|
padded_input_ids = torch.cat((padding, input_ids), dim=1)
|
|
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
|
|
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
|
|
next_logits_with_padding = model(
|
|
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
|
|
).logits[:, -1, :]
|
|
|
|
# They should result in very similar logits
|
|
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
"""
|
|
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
|
|
This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention".
|
|
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
|
|
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
|
|
See https://github.com/huggingface/transformers/pull/32238 for more info
|
|
|
|
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
|
|
that has a different set of sub-configs has to overwrite this test.
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self._is_composite:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# `None` as it is the requested one which will be assigned to each sub-config
|
|
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
|
|
self.assertTrue(model.language_model.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model.vision_model.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model.qformer.config._attn_implementation == "eager")
|
|
|
|
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
class_name.endswith("Attention")
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation == "sdpa"
|
|
):
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_video():
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video = np.load(video_file)[::2] # sample every 2nd frame to get 4 frames total
|
|
return video
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@slow
|
|
class InstructBlipVideoModelIntegrationTest(unittest.TestCase):
|
|
def test_inference_vicuna_7b(self):
|
|
processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
|
model = InstructBlipVideoForConditionalGeneration.from_pretrained(
|
|
"Salesforce/instructblip-vicuna-7b",
|
|
load_in_8bit=True,
|
|
)
|
|
|
|
clip = prepare_video()
|
|
prompt = "Explain what is happening in this short video."
|
|
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
# verify generation
|
|
outputs = model.generate(**inputs, max_new_tokens=30)
|
|
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
|
self.assertEqual(
|
|
generated_text,
|
|
"Explain what is happening in this short video. a baby girl wearing glasses is reading a book on the bed 1080p",
|
|
)
|
|
|
|
def test_expansion_in_processing(self):
|
|
processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
|
model = InstructBlipVideoForConditionalGeneration.from_pretrained(
|
|
"Salesforce/instructblip-vicuna-7b",
|
|
load_in_8bit=True,
|
|
)
|
|
|
|
clip = prepare_video()
|
|
prompt = "Explain what is happening in this short video."
|
|
|
|
# Make sure we will go the legacy path by setting these args to None
|
|
processor.num_query_tokens = None
|
|
model.config.video_token_index = None
|
|
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
|
|
|
|
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
|
|
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
|
|
|
|
# Add args to the config to trigger new logic when inputs are expanded in processing file
|
|
processor.num_query_tokens = model.config.num_query_tokens
|
|
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<video>"]})
|
|
model.config.video_token_index = len(processor.tokenizer) - 1
|
|
model.resize_token_embeddings(len(processor.tokenizer), pad_to_multiple_of=64)
|
|
|
|
# Generate again with new inputs
|
|
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
|
|
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
|
|
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
|
|
|
|
self.assertTrue(generated_text_expanded == generated_text)
|