transformers/tests/models/instructblipvideo/test_modeling_instructblipvideo.py
Raushan Turganbay f8b88866f5
[VLMs] support passing embeds along with pixels (#38467)
* VLMs can work with embeds now

* update more models

* fix tests

* fix copies

* fixup

* fix

* style

* unskip tests

* fix copies

* fix tests

* style

* omni modality models

* qwen models had extra indentation

* fix some other tests

* fix copies

* fix test last time

* unrelated changes revert

* we can't rely only on embeds

* delete file

* de-flake mistral3

* fix qwen models

* fix style

* fix tests

* fix copies

* deflake the test

* modular reverted by fixes, fix again

* flaky test, overwritten

* fix copies

* style
2025-07-01 11:33:20 +00:00

779 lines
32 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch InstructBlipVideo model."""
import inspect
import tempfile
import unittest
import numpy as np
import pytest
from huggingface_hub import hf_hub_download
from transformers import (
CONFIG_MAPPING,
InstructBlipVideoConfig,
InstructBlipVideoProcessor,
InstructBlipVideoQFormerConfig,
InstructBlipVideoVisionConfig,
)
from transformers.testing_utils import (
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
ids_tensor,
random_attention_mask,
)
if is_torch_available():
import torch
from torch import nn
from transformers import (
InstructBlipVideoForConditionalGeneration,
InstructBlipVideoModel,
InstructBlipVideoVisionModel,
)
class InstructBlipVideoVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
frames=4,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.frames = frames
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size * self.frames, self.num_channels, self.image_size, self.image_size]
)
config = self.get_config()
return config, pixel_values
def get_config(self):
return InstructBlipVideoVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = InstructBlipVideoVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size * self.frames, num_patches + 1, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.frames, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class InstructBlipVideoVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBlipVideo's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (InstructBlipVideoVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = InstructBlipVideoVisionModelTester(self)
common_properties = ["num_query_tokens", "video_token_index"]
self.config_tester = ConfigTester(
self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="InstructBlipVideo's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="InstructBlipVideo's vision encoder is an nn.Embeddings layer")
def test_model_get_set_embeddings(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(
reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
)
def test_training(self):
pass
@unittest.skip(
reason="InstructBlipVideoVisionModel is an internal building block, doesn't support standalone training"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-vicuna-7b"
model = InstructBlipVideoVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class InstructBlipVideoQFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
def get_config(self):
return InstructBlipVideoQFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class InstructBlipVideoTextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=100,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self,
parent,
vision_kwargs=None,
qformer_kwargs=None,
text_kwargs=None,
is_training=True,
num_query_tokens=10,
video_token_index=4,
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = InstructBlipVideoVisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = InstructBlipVideoQFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = InstructBlipVideoTextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.frames = self.vision_model_tester.frames
# need seq_length for common tests
self.seq_length = self.text_model_tester.seq_length + (num_query_tokens * self.frames)
self.is_training = is_training
self.num_query_tokens = num_query_tokens
self.video_token_index = video_token_index
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
_, c, h, w = pixel_values.shape
pixel_values = pixel_values.reshape(-1, self.frames, c, h, w)
vision_tokens = (
torch.ones(
(input_ids.shape[0], self.num_query_tokens * self.frames), device=torch_device, dtype=input_ids.dtype
)
* self.video_token_index
)
input_ids[input_ids == self.video_token_index] = self.text_model_tester.pad_token_id
input_ids = torch.cat([vision_tokens, input_ids], dim=-1)
vision_attention_mask = torch.ones_like(vision_tokens)
attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1)
config = self.get_config()
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
def get_config(self):
return InstructBlipVideoConfig.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
video_token_index=self.video_token_index,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
):
model = InstructBlipVideoForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
qformer_input_ids=qformer_input_ids,
qformer_attention_mask=qformer_attention_mask,
)
expected_seq_length = (
self.num_query_tokens * self.vision_model_tester.frames
) + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"qformer_input_ids": qformer_input_ids,
"qformer_attention_mask": qformer_attention_mask,
}
return config, inputs_dict
@require_torch
class InstructBlipVideoForConditionalGenerationDecoderOnlyTest(
ModelTesterMixin, GenerationTesterMixin, unittest.TestCase
):
all_model_classes = (
(InstructBlipVideoForConditionalGeneration, InstructBlipVideoModel) if is_torch_available() else ()
)
additional_model_inputs = ["qformer_input_ids", "input_ids"]
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
_is_composite = True
def setUp(self):
self.model_tester = InstructBlipVideoForConditionalGenerationDecoderOnlyModelTester(self)
common_properties = ["num_query_tokens", "video_token_index"]
self.config_tester = ConfigTester(
self, config_class=InstructBlipVideoConfig, has_text_modality=False, common_properties=common_properties
)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="InstructBlipVideoForConditionalGeneration doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Tied weights are tested in individual model tests")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="InstructBlipVideoModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save InstructBlipVideoConfig and check if we can load InstructBlipVideoVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = InstructBlipVideoVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save InstructBlipVideoConfig and check if we can load InstructBlipVideoQFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = InstructBlipVideoQFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-vicuna-7b"
model = InstructBlipVideoForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite because InstructBLIPVideo internally calls LM.generate() with embeds thus it cannot operate in no cache format
def _check_generate_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1):
use_cache = True # force this to be True in case False is passed
super()._check_generate_outputs(
output, config, use_cache=use_cache, num_return_sequences=num_return_sequences, num_beams=num_beams
)
# overwrite because InstructBLIPVideo cannot generate only from input ids, and requires `pixel` values and `qformer_input_ids` in all cases to be present
@pytest.mark.generate
def test_left_padding_compatibility(self):
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding
# - The model must have generative capabilities
if len(self.all_generative_model_classes) == 0:
self.skipTest(reason="No generative architecture available for this model.")
# - The model must support padding
if not self.has_attentions:
self.skipTest(reason="This model doesn't support padding.")
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _ = self.prepare_config_and_inputs_for_generate()
if config.is_encoder_decoder:
continue
else:
decoder_only_classes.append(model_class)
if len(decoder_only_classes) == 0:
self.skipTest(reason="No decoder-only architecture available for this model.")
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
# added support for it yet. We skip these models for now.
has_encoder_attributes = any(
attr_name
for attr_name in config.to_dict().keys()
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
)
if has_encoder_attributes:
self.skipTest(
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
)
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict.get("attention_mask")
pixel_values = inputs_dict["pixel_values"]
qformer_input_ids = inputs_dict["qformer_input_ids"]
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
).logits[:, -1, :]
# They should result in very similar logits
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == "sdpa")
self.assertTrue(model.vision_model.config._attn_implementation == "sdpa")
self.assertTrue(model.qformer.config._attn_implementation == "eager")
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == "sdpa"
):
raise ValueError("The eager model should not have SDPA attention layers")
# We will verify our results on an image of cute cats
def prepare_video():
video_file = hf_hub_download(
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
)
video = np.load(video_file)[::2] # sample every 2nd frame to get 4 frames total
return video
@require_vision
@require_torch
@require_bitsandbytes
@require_accelerate
@slow
class InstructBlipVideoModelIntegrationTest(unittest.TestCase):
def test_inference_vicuna_7b(self):
processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model = InstructBlipVideoForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-vicuna-7b",
load_in_8bit=True,
)
clip = prepare_video()
prompt = "Explain what is happening in this short video."
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
# verify generation
outputs = model.generate(**inputs, max_new_tokens=30)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
self.assertEqual(
generated_text,
"Explain what is happening in this short video. a baby girl wearing glasses is reading a book on the bed 1080p",
)
def test_expansion_in_processing(self):
processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model = InstructBlipVideoForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-vicuna-7b",
load_in_8bit=True,
)
clip = prepare_video()
prompt = "Explain what is happening in this short video."
# Make sure we will go the legacy path by setting these args to None
processor.num_query_tokens = None
model.config.video_token_index = None
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Add args to the config to trigger new logic when inputs are expanded in processing file
processor.num_query_tokens = model.config.num_query_tokens
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<video>"]})
model.config.video_token_index = len(processor.tokenizer) - 1
model.resize_token_embeddings(len(processor.tokenizer), pad_to_multiple_of=64)
# Generate again with new inputs
inputs = processor(images=clip, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
self.assertTrue(generated_text_expanded == generated_text)