mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* VLMs can work with embeds now * update more models * fix tests * fix copies * fixup * fix * style * unskip tests * fix copies * fix tests * style * omni modality models * qwen models had extra indentation * fix some other tests * fix copies * fix test last time * unrelated changes revert * we can't rely only on embeds * delete file * de-flake mistral3 * fix qwen models * fix style * fix tests * fix copies * deflake the test * modular reverted by fixes, fix again * flaky test, overwritten * fix copies * style
310 lines
11 KiB
Python
310 lines
11 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch ColPali model."""
|
|
|
|
import gc
|
|
import unittest
|
|
from typing import ClassVar
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
|
|
from tests.test_configuration_common import ConfigTester
|
|
from tests.test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from transformers import (
|
|
is_torch_available,
|
|
)
|
|
from transformers.models.colpali.configuration_colpali import ColPaliConfig
|
|
from transformers.models.colpali.modeling_colpali import ColPaliForRetrieval, ColPaliForRetrievalOutput
|
|
from transformers.models.colpali.processing_colpali import ColPaliProcessor
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class ColPaliForRetrievalModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=0,
|
|
projector_hidden_act="gelu",
|
|
seq_length=25,
|
|
vision_feature_select_strategy="default",
|
|
vision_feature_layer=-1,
|
|
projection_dim=32,
|
|
text_config={
|
|
"model_type": "gemma",
|
|
"seq_length": 128,
|
|
"is_training": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"num_key_value_heads": 1,
|
|
"head_dim": 8,
|
|
"intermediate_size": 37,
|
|
"hidden_activation": "gelu_pytorch_tanh",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 512,
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 1,
|
|
},
|
|
is_training=False,
|
|
vision_config={
|
|
"use_labels": True,
|
|
"image_size": 20,
|
|
"patch_size": 5,
|
|
"num_image_tokens": 4,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_key_value_heads": 1,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
use_cache=False,
|
|
embedding_dim=128,
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
|
|
self.image_token_index = image_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.seq_length = seq_length
|
|
self.projection_dim = projection_dim
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 3
|
|
self.num_channels = vision_config["num_channels"]
|
|
self.image_size = vision_config["image_size"]
|
|
self.encoder_seq_length = seq_length
|
|
self.use_cache = use_cache
|
|
|
|
self.embedding_dim = embedding_dim
|
|
self.vlm_config = {
|
|
"model_type": "paligemma",
|
|
"text_config": self.text_config,
|
|
"vision_config": self.vision_config,
|
|
"ignore_index": self.ignore_index,
|
|
"image_token_index": self.image_token_index,
|
|
"projector_hidden_act": self.projector_hidden_act,
|
|
"projection_dim": self.projection_dim,
|
|
"vision_feature_select_strategy": self.vision_feature_select_strategy,
|
|
"vision_feature_layer": self.vision_feature_layer,
|
|
}
|
|
|
|
def get_config(self):
|
|
return ColPaliConfig(
|
|
vlm_config=self.vlm_config,
|
|
embedding_dim=self.embedding_dim,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.vlm_config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
# set the 16 first tokens to be image, and ensure that no other tokens are image tokens
|
|
# do not change this unless you modified image size or patch size
|
|
input_ids[input_ids == config.vlm_config.image_token_index] = self.pad_token_id
|
|
input_ids[:, :16] = config.vlm_config.image_token_index
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels": input_ids,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ColPaliForRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `ColPaliForRetrieval`.
|
|
"""
|
|
|
|
all_model_classes = (ColPaliForRetrieval,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_torchscript = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = ColPaliForRetrievalModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ColPaliConfig, has_text_modality=False)
|
|
|
|
@slow
|
|
@require_vision
|
|
def test_colpali_forward_inputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, return_dict=True)
|
|
|
|
self.assertIsInstance(outputs, ColPaliForRetrievalOutput)
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="From PaliGemma: Some undefined behavior encountered with test versions of this model. Skip for now."
|
|
)
|
|
def test_model_parallelism(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="PaliGemma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
|
|
)
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
# TODO extend valid outputs to include this test @Molbap
|
|
@unittest.skip(reason="PaliGemma has currently one output format.")
|
|
def test_model_outputs_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Pass because ColPali requires `attention_mask is not None`")
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Pass because ColPali requires `attention_mask is not None`")
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class ColPaliModelIntegrationTest(unittest.TestCase):
|
|
model_name: ClassVar[str] = "vidore/colpali-v1.2-hf"
|
|
|
|
def setUp(self):
|
|
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@slow
|
|
def test_model_integration_test(self):
|
|
"""
|
|
Test if the model is able to retrieve the correct pages for a small and easy dataset.
|
|
"""
|
|
model = ColPaliForRetrieval.from_pretrained(
|
|
self.model_name,
|
|
torch_dtype=torch.bfloat16,
|
|
device_map=torch_device,
|
|
).eval()
|
|
|
|
# Load the test dataset
|
|
ds = load_dataset("hf-internal-testing/document-visual-retrieval-test", split="test")
|
|
|
|
# Preprocess the examples
|
|
batch_images = self.processor(images=ds["image"]).to(torch_device)
|
|
batch_queries = self.processor(text=ds["query"]).to(torch_device)
|
|
|
|
# Run inference
|
|
with torch.inference_mode():
|
|
image_embeddings = model(**batch_images).embeddings
|
|
query_embeddings = model(**batch_queries).embeddings
|
|
|
|
# Compute retrieval scores
|
|
scores = self.processor.score_retrieval(
|
|
query_embeddings=query_embeddings,
|
|
passage_embeddings=image_embeddings,
|
|
) # (num_queries, num_passages)
|
|
|
|
assert scores.ndim == 2, f"Expected 2D tensor, got {scores.ndim}"
|
|
assert scores.shape == (len(ds), len(ds)), f"Expected shape {(len(ds), len(ds))}, got {scores.shape}"
|
|
|
|
# Check if the maximum scores per row are in the diagonal of the matrix score
|
|
self.assertTrue((scores.argmax(axis=1) == torch.arange(len(ds), device=scores.device)).all())
|
|
|
|
# Further validation: fine-grained check, with a hardcoded score from the original implementation
|
|
expected_scores = torch.tensor(
|
|
[
|
|
[15.5625, 6.5938, 14.4375],
|
|
[12.2500, 16.2500, 11.0000],
|
|
[15.0625, 11.7500, 21.0000],
|
|
],
|
|
dtype=scores.dtype,
|
|
)
|
|
|
|
assert torch.allclose(scores, expected_scores, atol=1), f"Expected scores {expected_scores}, got {scores}"
|