transformers/tests/models/colpali/test_modeling_colpali.py
Raushan Turganbay f8b88866f5
[VLMs] support passing embeds along with pixels (#38467)
* VLMs can work with embeds now

* update more models

* fix tests

* fix copies

* fixup

* fix

* style

* unskip tests

* fix copies

* fix tests

* style

* omni modality models

* qwen models had extra indentation

* fix some other tests

* fix copies

* fix test last time

* unrelated changes revert

* we can't rely only on embeds

* delete file

* de-flake mistral3

* fix qwen models

* fix style

* fix tests

* fix copies

* deflake the test

* modular reverted by fixes, fix again

* flaky test, overwritten

* fix copies

* style
2025-07-01 11:33:20 +00:00

310 lines
11 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ColPali model."""
import gc
import unittest
from typing import ClassVar
import torch
from datasets import load_dataset
from tests.test_configuration_common import ConfigTester
from tests.test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from transformers import (
is_torch_available,
)
from transformers.models.colpali.configuration_colpali import ColPaliConfig
from transformers.models.colpali.modeling_colpali import ColPaliForRetrieval, ColPaliForRetrievalOutput
from transformers.models.colpali.processing_colpali import ColPaliProcessor
from transformers.testing_utils import (
backend_empty_cache,
require_torch,
require_vision,
slow,
torch_device,
)
if is_torch_available():
import torch
class ColPaliForRetrievalModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=25,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
projection_dim=32,
text_config={
"model_type": "gemma",
"seq_length": 128,
"is_training": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"num_key_value_heads": 1,
"head_dim": 8,
"intermediate_size": 37,
"hidden_activation": "gelu_pytorch_tanh",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 1,
},
is_training=False,
vision_config={
"use_labels": True,
"image_size": 20,
"patch_size": 5,
"num_image_tokens": 4,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
use_cache=False,
embedding_dim=128,
):
self.parent = parent
self.ignore_index = ignore_index
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.projection_dim = projection_dim
self.pad_token_id = text_config["pad_token_id"]
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = vision_config["num_channels"]
self.image_size = vision_config["image_size"]
self.encoder_seq_length = seq_length
self.use_cache = use_cache
self.embedding_dim = embedding_dim
self.vlm_config = {
"model_type": "paligemma",
"text_config": self.text_config,
"vision_config": self.vision_config,
"ignore_index": self.ignore_index,
"image_token_index": self.image_token_index,
"projector_hidden_act": self.projector_hidden_act,
"projection_dim": self.projection_dim,
"vision_feature_select_strategy": self.vision_feature_select_strategy,
"vision_feature_layer": self.vision_feature_layer,
}
def get_config(self):
return ColPaliConfig(
vlm_config=self.vlm_config,
embedding_dim=self.embedding_dim,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.vlm_config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
# set the 16 first tokens to be image, and ensure that no other tokens are image tokens
# do not change this unless you modified image size or patch size
input_ids[input_ids == config.vlm_config.image_token_index] = self.pad_token_id
input_ids[:, :16] = config.vlm_config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
class ColPaliForRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `ColPaliForRetrieval`.
"""
all_model_classes = (ColPaliForRetrieval,) if is_torch_available() else ()
fx_compatible = False
test_torchscript = False
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def setUp(self):
self.model_tester = ColPaliForRetrievalModelTester(self)
self.config_tester = ConfigTester(self, config_class=ColPaliConfig, has_text_modality=False)
@slow
@require_vision
def test_colpali_forward_inputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
with torch.no_grad():
outputs = model(**inputs, return_dict=True)
self.assertIsInstance(outputs, ColPaliForRetrievalOutput)
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(
reason="From PaliGemma: Some undefined behavior encountered with test versions of this model. Skip for now."
)
def test_model_parallelism(self):
pass
@unittest.skip(
reason="PaliGemma's SigLip encoder uses the same initialization scheme as the Flax original implementation"
)
def test_initialization(self):
pass
# TODO extend valid outputs to include this test @Molbap
@unittest.skip(reason="PaliGemma has currently one output format.")
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="Pass because ColPali requires `attention_mask is not None`")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip(reason="Pass because ColPali requires `attention_mask is not None`")
def test_sdpa_can_compile_dynamic(self):
pass
@require_torch
class ColPaliModelIntegrationTest(unittest.TestCase):
model_name: ClassVar[str] = "vidore/colpali-v1.2-hf"
def setUp(self):
self.processor = ColPaliProcessor.from_pretrained(self.model_name)
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
@slow
def test_model_integration_test(self):
"""
Test if the model is able to retrieve the correct pages for a small and easy dataset.
"""
model = ColPaliForRetrieval.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map=torch_device,
).eval()
# Load the test dataset
ds = load_dataset("hf-internal-testing/document-visual-retrieval-test", split="test")
# Preprocess the examples
batch_images = self.processor(images=ds["image"]).to(torch_device)
batch_queries = self.processor(text=ds["query"]).to(torch_device)
# Run inference
with torch.inference_mode():
image_embeddings = model(**batch_images).embeddings
query_embeddings = model(**batch_queries).embeddings
# Compute retrieval scores
scores = self.processor.score_retrieval(
query_embeddings=query_embeddings,
passage_embeddings=image_embeddings,
) # (num_queries, num_passages)
assert scores.ndim == 2, f"Expected 2D tensor, got {scores.ndim}"
assert scores.shape == (len(ds), len(ds)), f"Expected shape {(len(ds), len(ds))}, got {scores.shape}"
# Check if the maximum scores per row are in the diagonal of the matrix score
self.assertTrue((scores.argmax(axis=1) == torch.arange(len(ds), device=scores.device)).all())
# Further validation: fine-grained check, with a hardcoded score from the original implementation
expected_scores = torch.tensor(
[
[15.5625, 6.5938, 14.4375],
[12.2500, 16.2500, 11.0000],
[15.0625, 11.7500, 21.0000],
],
dtype=scores.dtype,
)
assert torch.allclose(scores, expected_scores, atol=1), f"Expected scores {expected_scores}, got {scores}"