mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* VLMs can work with embeds now * update more models * fix tests * fix copies * fixup * fix * style * unskip tests * fix copies * fix tests * style * omni modality models * qwen models had extra indentation * fix some other tests * fix copies * fix test last time * unrelated changes revert * we can't rely only on embeds * delete file * de-flake mistral3 * fix qwen models * fix style * fix tests * fix copies * deflake the test * modular reverted by fixes, fix again * flaky test, overwritten * fix copies * style
1036 lines
42 KiB
Python
1036 lines
42 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# This file was automatically generated from src/transformers/models/internvl/modular_internvl.py.
|
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
# modular_internvl.py file directly. One of our CI enforces this.
|
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import collections.abc
|
|
from dataclasses import dataclass
|
|
from typing import Callable, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ...activations import ACT2FN
|
|
from ...generation import GenerationMixin
|
|
from ...integrations import use_kernel_forward_from_hub
|
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPooling
|
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
from ...processing_utils import Unpack
|
|
from ...utils import (
|
|
LossKwargs,
|
|
ModelOutput,
|
|
auto_docstring,
|
|
can_return_tuple,
|
|
is_torchdynamo_compiling,
|
|
torch_int,
|
|
)
|
|
from ..auto import AutoModel
|
|
from .configuration_internvl import InternVLConfig, InternVLVisionConfig
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm")
|
|
class InternVLVisionRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
InternVLVisionRMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
def extra_repr(self):
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
|
|
|
|
def eager_attention_forward(
|
|
module: nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor],
|
|
scaling: float,
|
|
dropout: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
key_states = key
|
|
value_states = value
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
# No upcasting of the attention weights to float32 in this implementation
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class InternVLVisionAttention(nn.Module):
|
|
"""Attention Class for InternVL Vision Encoder"""
|
|
|
|
def __init__(self, config: InternVLVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.attention_dropout = config.attention_dropout
|
|
proj_dropout = config.projection_dropout
|
|
qk_norm = config.use_qk_norm
|
|
|
|
# Needed for flash attention
|
|
self.is_causal = False
|
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
|
|
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
|
|
self.projection_layer = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.projection_dropout = nn.Dropout(proj_dropout) if proj_dropout > 0 else nn.Identity()
|
|
|
|
self.q_norm = InternVLVisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
|
|
self.k_norm = InternVLVisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[torch.Tensor] = None,
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
):
|
|
batch_size, seq_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = self.q_norm(query_states)
|
|
key_states = self.k_norm(key_states)
|
|
|
|
query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=self.scale,
|
|
is_causal=False,
|
|
**kwargs,
|
|
)
|
|
attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim)
|
|
|
|
output = self.projection_layer(attn_output)
|
|
output = self.projection_dropout(output)
|
|
|
|
outputs = (output, attn_weights) if output_attentions else (output, None)
|
|
return outputs
|
|
|
|
|
|
@auto_docstring
|
|
class InternVLVisionPreTrainedModel(PreTrainedModel):
|
|
config_class = InternVLVisionConfig
|
|
base_model_prefix = "internvl_vision"
|
|
main_input_name = "pixel_values"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["InternVLVisionLayer"]
|
|
_supports_sdpa = True
|
|
_supports_flash_attn_2 = True
|
|
_supports_flex_attn = True
|
|
_supports_attention_backend = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
elif isinstance(module, InternVLVisionEmbeddings):
|
|
module.cls_token.data.zero_()
|
|
if module.mask_token is not None:
|
|
module.mask_token.data.zero_()
|
|
if module.position_embeddings is not None:
|
|
module.position_embeddings.data.zero_()
|
|
elif isinstance(module, InternVLVisionLayer):
|
|
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
|
|
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
|
|
|
|
|
|
@dataclass
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
Class for outputs of [`InternVLVisionModel`].
|
|
"""
|
|
)
|
|
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
|
|
r"""
|
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
|
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
|
|
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
|
|
will be returned.
|
|
"""
|
|
|
|
|
|
class InternVLVisionPatchEmbeddings(nn.Module):
|
|
"""
|
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
|
Transformer.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
image_size, patch_size = config.image_size, config.patch_size
|
|
num_channels, hidden_size = config.num_channels, config.hidden_size
|
|
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.num_patches = num_patches
|
|
self.patch_shape = patch_shape
|
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
|
batch_size, num_channels, height, width = pixel_values.shape
|
|
if num_channels != self.num_channels:
|
|
raise ValueError(
|
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
|
)
|
|
|
|
embeddings = self.projection(pixel_values)
|
|
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
|
|
embeddings = embeddings.flatten(2).transpose(1, 2)
|
|
|
|
return embeddings, (patch_height, patch_width)
|
|
|
|
|
|
# Based on timm implementation, which can be found here:
|
|
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
class InternVLVisionEmbeddings(nn.Module):
|
|
"""
|
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
|
|
|
|
"""
|
|
|
|
def __init__(self, config: InternVLVisionConfig) -> None:
|
|
super().__init__()
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
if config.use_mask_token:
|
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
else:
|
|
self.mask_token = None
|
|
self.patch_embeddings = InternVLVisionPatchEmbeddings(config)
|
|
self.patch_size = config.patch_size
|
|
self.image_size = (
|
|
config.image_size
|
|
if isinstance(config.image_size, collections.abc.Iterable)
|
|
else (config.image_size, config.image_size)
|
|
)
|
|
num_patches = self.patch_embeddings.num_patches
|
|
if config.use_absolute_position_embeddings:
|
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
|
else:
|
|
self.position_embeddings = None
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
|
"""
|
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
|
|
images. This method is also adapted to support torch.jit tracing.
|
|
|
|
Adapted from:
|
|
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
|
|
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
|
|
"""
|
|
|
|
num_patches = embeddings.shape[1] - 1
|
|
num_positions = self.position_embeddings.shape[1] - 1
|
|
|
|
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
|
|
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
|
|
return self.position_embeddings
|
|
|
|
class_pos_embed = self.position_embeddings[:, :1]
|
|
patch_pos_embed = self.position_embeddings[:, 1:]
|
|
|
|
dim = embeddings.shape[-1]
|
|
|
|
new_height = height // self.patch_size[0]
|
|
new_width = width // self.patch_size[1]
|
|
|
|
sqrt_num_positions = torch_int(num_positions**0.5)
|
|
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
|
|
|
patch_pos_embed = nn.functional.interpolate(
|
|
patch_pos_embed,
|
|
size=(new_height, new_width),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
|
|
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
|
) -> torch.Tensor:
|
|
_, _, height, width = pixel_values.shape
|
|
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values)
|
|
batch_size, seq_len, _ = embeddings.size()
|
|
|
|
if bool_masked_pos is not None:
|
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
|
|
# replace the masked visual tokens by mask_tokens
|
|
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
|
|
embeddings = embeddings * (1 - w) + mask_tokens * w
|
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
|
|
|
if self.position_embeddings is not None:
|
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
|
|
|
embeddings = self.dropout(embeddings)
|
|
|
|
return embeddings, (patch_height, patch_width)
|
|
|
|
|
|
class InternVLVisionMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
NORM2FN = {"layer_norm": nn.LayerNorm, "rms_norm": InternVLVisionRMSNorm}
|
|
|
|
|
|
class InternVLVisionLayer(GradientCheckpointingLayer):
|
|
"""This corresponds to the Block class in the timm implementation."""
|
|
|
|
def __init__(self, config: InternVLVisionConfig) -> None:
|
|
super().__init__()
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
self.attention = InternVLVisionAttention(config)
|
|
self.mlp = InternVLVisionMLP(config)
|
|
# InternVL uses different layernorm implementations for different models
|
|
self.layernorm_before = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
|
|
self.layernorm_after = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
init_values = config.layer_scale_init_value
|
|
self.lambda_1 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
|
|
self.lambda_2 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
output_attentions: bool = False,
|
|
) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]:
|
|
attention_output, attention_weights = self.attention(
|
|
self.layernorm_before(hidden_states), # in InternVLVision, layernorm is applied before self-attention
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
attention_output = self.lambda_1 * attention_output
|
|
|
|
# first residual connection
|
|
hidden_states = attention_output + hidden_states
|
|
|
|
# in InternVLVision, layernorm is also applied after self-attention
|
|
layer_output = self.layernorm_after(hidden_states)
|
|
|
|
layer_output = self.mlp(layer_output)
|
|
layer_output = self.dropout(layer_output)
|
|
|
|
if self.lambda_2 is not None:
|
|
layer_output = self.lambda_2 * layer_output
|
|
|
|
# second residual connection
|
|
layer_output = layer_output + hidden_states
|
|
|
|
return layer_output, attention_weights
|
|
|
|
|
|
class InternVLVisionEncoder(nn.Module):
|
|
def __init__(self, config: InternVLVisionConfig) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer = nn.ModuleList([InternVLVisionLayer(config) for i in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
@can_return_tuple
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
output_attentions: bool = False,
|
|
output_hidden_states: bool = False,
|
|
) -> Union[tuple, BaseModelOutput]:
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
for i, layer_module in enumerate(self.layer):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_outputs = layer_module(hidden_states, output_attentions)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring
|
|
class InternVLVisionModel(InternVLVisionPreTrainedModel):
|
|
def __init__(self, config: InternVLVisionConfig) -> None:
|
|
super().__init__(config)
|
|
self.config = config
|
|
|
|
self.embeddings = InternVLVisionEmbeddings(config)
|
|
self.encoder = InternVLVisionEncoder(config)
|
|
|
|
self.layernorm = (
|
|
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings.patch_embeddings
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
) -> Union[tuple, InternVLVisionModelOutputWithPooling]:
|
|
r"""
|
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
|
|
embedding_output, _ = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
|
|
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
sequence_output = encoder_outputs[0]
|
|
sequence_output = self.layernorm(sequence_output)
|
|
|
|
return InternVLVisionModelOutputWithPooling(
|
|
last_hidden_state=sequence_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring
|
|
class InternVLPreTrainedModel(PreTrainedModel):
|
|
config_class = InternVLConfig
|
|
base_model_prefix = ""
|
|
supports_gradient_checkpointing = True
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_cache_class = True
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_quantized_cache = True
|
|
_supports_static_cache = True
|
|
_supports_flex_attn = True
|
|
_supports_attention_backend = True
|
|
|
|
def _init_weights(self, module):
|
|
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
|
|
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
class InternVLMultiModalProjector(nn.Module):
|
|
def __init__(self, config: InternVLConfig):
|
|
super().__init__()
|
|
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2)
|
|
self.linear_1 = nn.Linear(
|
|
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2, config.text_config.hidden_size
|
|
)
|
|
self.act = ACT2FN[config.projector_hidden_act]
|
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size)
|
|
|
|
def forward(self, image_features):
|
|
hidden_states = self.layer_norm(image_features)
|
|
hidden_states = self.linear_1(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@dataclass
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
Base class for InternVL outputs, with hidden states and attentions.
|
|
"""
|
|
)
|
|
class InternVLModelOutputWithPast(BaseModelOutputWithPast):
|
|
r"""
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
image_hidden_states (`torch.FloatTensor`, *optional*):
|
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
|
"""
|
|
|
|
image_hidden_states: Optional[torch.FloatTensor] = None
|
|
|
|
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
The InternVL model which consists of a vision backbone and a language model, without a language modeling head.
|
|
"""
|
|
)
|
|
class InternVLModel(InternVLPreTrainedModel):
|
|
_checkpoint_conversion_mapping = {"language_model.model": "language_model"}
|
|
|
|
def __init__(self, config: InternVLConfig):
|
|
super().__init__(config)
|
|
self.vision_tower = AutoModel.from_config(config.vision_config)
|
|
|
|
self.multi_modal_projector = InternVLMultiModalProjector(config)
|
|
self.language_model = AutoModel.from_config(config.text_config)
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.language_model.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.language_model.set_input_embeddings(value)
|
|
|
|
def set_decoder(self, decoder):
|
|
self.language_model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.language_model
|
|
|
|
def get_image_features(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
|
vision_feature_select_strategy: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Obtains image last hidden states from the vision tower and apply multimodal projection.
|
|
|
|
Args:
|
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
|
The tensors corresponding to the input images.
|
|
vision_feature_layer (`int` or `list[int]`):
|
|
Layer index or list of layer indices to extract features from.
|
|
Returns:
|
|
vision_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`.
|
|
"""
|
|
vision_feature_layer = (
|
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
)
|
|
vision_feature_select_strategy = (
|
|
vision_feature_select_strategy
|
|
if vision_feature_select_strategy is not None
|
|
else self.config.vision_feature_select_strategy
|
|
)
|
|
|
|
downsample_ratio = self.config.downsample_ratio
|
|
if vision_feature_layer == -1:
|
|
vision_features = self.vision_tower(pixel_values=pixel_values).last_hidden_state
|
|
else:
|
|
vision_features = self.vision_model(pixel_values=pixel_values).hidden_states[vision_feature_layer]
|
|
if vision_feature_select_strategy == "default":
|
|
vision_features = vision_features[:, 1:, :]
|
|
|
|
# Calculate dimensions based on vision features
|
|
channels = vision_features.shape[1]
|
|
feature_size = int(channels**0.5)
|
|
batch_size = vision_features.shape[0]
|
|
|
|
# Reshape tensor to spatial dimensions
|
|
vision_features = vision_features.reshape(batch_size, feature_size, feature_size, -1)
|
|
|
|
# Apply downsampling using pixel shuffle
|
|
vision_features = self.pixel_shuffle(vision_features, scale_factor=downsample_ratio)
|
|
|
|
# Reshape tensor to prepare for projection
|
|
vision_features = vision_features.reshape(batch_size, -1, vision_features.shape[-1])
|
|
|
|
# Project features through multi-modal projector
|
|
vision_features = self.multi_modal_projector(vision_features)
|
|
return vision_features
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
|
vision_feature_select_strategy: Optional[str] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> Union[tuple, InternVLModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
vision_feature_layer = (
|
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
)
|
|
vision_feature_select_strategy = (
|
|
vision_feature_select_strategy
|
|
if vision_feature_select_strategy is not None
|
|
else self.config.vision_feature_select_strategy
|
|
)
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
|
|
if pixel_values is not None:
|
|
image_features = self.get_image_features(
|
|
pixel_values=pixel_values,
|
|
vision_feature_layer=vision_feature_layer,
|
|
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
)
|
|
|
|
if input_ids is None:
|
|
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
)
|
|
special_image_mask = special_image_mask.all(-1)
|
|
else:
|
|
special_image_mask = input_ids == self.config.image_token_id
|
|
|
|
n_image_tokens = (special_image_mask).sum()
|
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
|
n_image_features = image_features.shape[0] * image_features.shape[1]
|
|
raise ValueError(
|
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
)
|
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
|
|
|
outputs = self.language_model(
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
|
|
return InternVLModelOutputWithPast(
|
|
last_hidden_state=outputs.last_hidden_state,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_hidden_states=image_features if pixel_values is not None else None,
|
|
)
|
|
|
|
def pixel_shuffle(self, vision_features: torch.Tensor, scale_factor: float = 0.5):
|
|
"""Perform pixel shuffle downsampling on vision features.
|
|
|
|
Args:
|
|
vision_features (`torch.Tensor`):
|
|
Input tensor of shape (batch_size, width, height, channels).
|
|
scale_factor (`float`, *optional*, defaults to `0.5`):
|
|
Factor by which to downsample. Default is 0.5, which halves the dimensions.
|
|
|
|
Returns:
|
|
vision_features (`torch.Tensor`):
|
|
Downsampled tensor of shape (batch_size, height*scale_factor, width*scale_factor, channels/(scale_factor^2)).
|
|
"""
|
|
batch_size, width, height, channels = vision_features.size()
|
|
|
|
if height % scale_factor != 0 or width % scale_factor != 0:
|
|
raise ValueError("Height and width must be divisible by scale_factor for proper downsampling.")
|
|
|
|
# Reshape to allow downsampling
|
|
vision_features = vision_features.view(
|
|
batch_size, width, int(height * scale_factor), int(channels / scale_factor)
|
|
)
|
|
# Permute dimensions to align downsampled axis correctly
|
|
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
|
|
|
|
# Reshape to achieve final downsampled dimensions
|
|
vision_features = vision_features.view(
|
|
batch_size, int(height * scale_factor), int(width * scale_factor), int(channels / (scale_factor**2))
|
|
)
|
|
|
|
# Swap height and width back for proper orientation
|
|
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
|
|
|
|
return vision_features
|
|
|
|
|
|
@dataclass
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
Base class for InternVL causal language model (or autoregressive) outputs.
|
|
"""
|
|
)
|
|
class InternVLCausalLMOutputWithPast(ModelOutput):
|
|
r"""
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
Language modeling loss (for next-token prediction).
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
image_hidden_states (`torch.FloatTensor`, *optional*):
|
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
|
"""
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: Optional[torch.FloatTensor] = None
|
|
past_key_values: Optional[list[torch.FloatTensor]] = None
|
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[tuple[torch.FloatTensor]] = None
|
|
image_hidden_states: Optional[torch.FloatTensor] = None
|
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
|
|
|
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
The INTERNVL model which consists of a vision backbone and a language model.
|
|
"""
|
|
)
|
|
class InternVLForConditionalGeneration(InternVLPreTrainedModel, GenerationMixin):
|
|
_checkpoint_conversion_mapping = {
|
|
"^language_model.model": "model.language_model",
|
|
"^vision_tower": "model.vision_tower",
|
|
"^multi_modal_projector": "model.multi_modal_projector",
|
|
"^language_model.lm_head": "lm_head",
|
|
}
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config: InternVLConfig):
|
|
super().__init__(config)
|
|
self.model = InternVLModel(config)
|
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.set_input_embeddings(value)
|
|
|
|
def get_output_embeddings(self) -> nn.Module:
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model.set_decoder(decoder)
|
|
|
|
def get_decoder(self):
|
|
return self.model.get_decoder
|
|
|
|
def get_image_features(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
|
vision_feature_select_strategy: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
return self.model.get_image_features(
|
|
pixel_values=pixel_values,
|
|
vision_feature_layer=vision_feature_layer,
|
|
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
**kwargs,
|
|
)
|
|
|
|
# Make modules available throught conditional class for BC
|
|
@property
|
|
def language_model(self):
|
|
return self.model.language_model
|
|
|
|
@property
|
|
def vision_tower(self):
|
|
return self.model.vision_tower
|
|
|
|
@property
|
|
def multi_modal_projector(self):
|
|
return self.model.multi_modal_projector
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
vision_feature_layer: Optional[Union[int, list[int]]] = None,
|
|
vision_feature_select_strategy: Optional[str] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
image_sizes: Optional[torch.Tensor] = None,
|
|
**kwargs: Unpack[KwargsForCausalLM],
|
|
) -> Union[tuple, InternVLCausalLMOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> import torch
|
|
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
|
|
>>> torch_device = "cuda"
|
|
>>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
|
|
>>> model = AutoModelForImageTextToText.from_pretrained(
|
|
... "OpenGVLab/InternVL3-1B-hf", torch_dtype=torch.bfloat16, device_map=torch_device
|
|
... )
|
|
|
|
>>> messages = [
|
|
... {
|
|
... "role": "user",
|
|
... "content": [
|
|
... {
|
|
... "type": "image",
|
|
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
... },
|
|
... {
|
|
... "type": "image",
|
|
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
... },
|
|
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
|
... ],
|
|
... },
|
|
... ]
|
|
|
|
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
|
|
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
|
|
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
|
|
The images depict the Statue of Liberty and the Golden Gate Bridge.
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
vision_feature_layer = (
|
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
)
|
|
vision_feature_select_strategy = (
|
|
vision_feature_select_strategy
|
|
if vision_feature_select_strategy is not None
|
|
else self.config.vision_feature_select_strategy
|
|
)
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
vision_feature_layer=vision_feature_layer,
|
|
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
cache_position=cache_position,
|
|
image_sizes=image_sizes,
|
|
**kwargs,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(
|
|
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
|
|
)
|
|
|
|
return InternVLCausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
image_hidden_states=outputs.image_hidden_states,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
inputs_embeds=None,
|
|
pixel_values=None,
|
|
attention_mask=None,
|
|
cache_position=None,
|
|
logits_to_keep=None,
|
|
**kwargs,
|
|
):
|
|
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
|
|
model_inputs = super().prepare_inputs_for_generation(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
cache_position=cache_position,
|
|
logits_to_keep=logits_to_keep,
|
|
**kwargs,
|
|
)
|
|
|
|
if cache_position[0] == 0:
|
|
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
|
# Otherwise we need pixel values to be passed to model
|
|
model_inputs["pixel_values"] = pixel_values
|
|
|
|
return model_inputs
|
|
|
|
|
|
__all__ = [
|
|
"InternVLVisionPreTrainedModel",
|
|
"InternVLVisionModel",
|
|
"InternVLPreTrainedModel",
|
|
"InternVLModel",
|
|
"InternVLForConditionalGeneration",
|
|
]
|