transformers/examples/flax/language-modeling/run_bert_flax.py
Louie Tsai f82b19cb6f
add a new flax example for Bert model inference (#34794)
* add a new example for flax inference cases

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/flax/language-modeling/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix for "make fixup"

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-21 14:09:29 +01:00

57 lines
1.3 KiB
Python

#!/usr/bin/env python3
import time
from argparse import ArgumentParser
import jax
import numpy as np
from transformers import BertConfig, FlaxBertModel
parser = ArgumentParser()
parser.add_argument("--precision", type=str, choices=["float32", "bfloat16"], default="float32")
args = parser.parse_args()
dtype = jax.numpy.float32
if args.precision == "bfloat16":
dtype = jax.numpy.bfloat16
VOCAB_SIZE = 30522
BS = 32
SEQ_LEN = 128
def get_input_data(batch_size=1, seq_length=384):
shape = (batch_size, seq_length)
input_ids = np.random.randint(1, VOCAB_SIZE, size=shape).astype(np.int32)
token_type_ids = np.ones(shape).astype(np.int32)
attention_mask = np.ones(shape).astype(np.int32)
return {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
inputs = get_input_data(BS, SEQ_LEN)
config = BertConfig.from_pretrained("bert-base-uncased", hidden_act="gelu_new")
model = FlaxBertModel.from_pretrained("bert-base-uncased", config=config, dtype=dtype)
@jax.jit
def func():
outputs = model(**inputs)
return outputs
(nwarmup, nbenchmark) = (5, 100)
# warmpup
for _ in range(nwarmup):
func()
# benchmark
start = time.time()
for _ in range(nbenchmark):
func()
end = time.time()
print(end - start)
print(f"Throughput: {((nbenchmark * BS)/(end-start)):.3f} examples/sec")