transformers/docs/source/model_doc/fsmt.rst
Sylvain Gugger 9e147d31f6
Deprecate prepare_seq2seq_batch (#10287)
* Deprecate prepare_seq2seq_batch

* Fix last tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* More review comments

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-02-22 12:36:16 -05:00

74 lines
3.6 KiB
ReStructuredText

..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
FSMT
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__ and assign
@stas00.
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FSMT (FairSeq MachineTranslation) models were introduced in `Facebook FAIR's WMT19 News Translation Task Submission
<https://arxiv.org/abs/1907.06616>`__ by Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, Sergey Edunov.
The abstract of the paper is the following:
*This paper describes Facebook FAIR's submission to the WMT19 shared news translation task. We participate in two
language pairs and four language directions, English <-> German and English <-> Russian. Following our submission from
last year, our baseline systems are large BPE-based transformer models trained with the Fairseq sequence modeling
toolkit which rely on sampled back-translations. This year we experiment with different bitext data filtering schemes,
as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific
data, then decode using noisy channel model reranking. Our submissions are ranked first in all four directions of the
human evaluation campaign. On En->De, our system significantly outperforms other systems as well as human translations.
This system improves upon our WMT'18 submission by 4.5 BLEU points.*
The original code can be found here <https://github.com/pytorch/fairseq/tree/master/examples/wmt19>__.
Implementation Notes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- FSMT uses source and target vocabulary pairs that aren't combined into one. It doesn't share embeddings tokens
either. Its tokenizer is very similar to :class:`~transformers.XLMTokenizer` and the main model is derived from
:class:`~transformers.BartModel`.
FSMTConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTConfig
:members:
FSMTTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
FSMTModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTModel
:members: forward
FSMTForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FSMTForConditionalGeneration
:members: forward