mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 06:48:58 +06:00

* move test model folders (TODO: fix imports and others) * fix (potentially partially) imports (in model test modules) * fix (potentially partially) imports (in tokenization test modules) * fix (potentially partially) imports (in feature extraction test modules) * fix import utils.test_modeling_tf_core * fix path ../fixtures/ * fix imports about generation.test_generation_flax_utils * fix more imports * fix fixture path * fix get_test_dir * update module_to_test_file * fix get_tests_dir from wrong transformers.utils * update config.yml (CircleCI) * fix style * remove missing imports * update new model script * update check_repo * update SPECIAL_MODULE_TO_TEST_MAP * fix style * add __init__ * update self-scheduled * fix add_new_model scripts * check one way to get location back * python setup.py build install * fix import in test auto * update self-scheduled.yml * update slack notification script * Add comments about artifact names * fix for yolos Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
138 lines
4.8 KiB
Python
138 lines
4.8 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import ElectraConfig, is_flax_available
|
|
from transformers.testing_utils import require_flax, slow
|
|
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
|
|
|
|
|
|
if is_flax_available():
|
|
from transformers.models.electra.modeling_flax_electra import (
|
|
FlaxElectraForCausalLM,
|
|
FlaxElectraForMaskedLM,
|
|
FlaxElectraForMultipleChoice,
|
|
FlaxElectraForPreTraining,
|
|
FlaxElectraForQuestionAnswering,
|
|
FlaxElectraForSequenceClassification,
|
|
FlaxElectraForTokenClassification,
|
|
FlaxElectraModel,
|
|
)
|
|
|
|
|
|
class FlaxElectraModelTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_attention_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
embedding_size=24,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_choices=4,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_attention_mask = use_attention_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.embedding_size = embedding_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_choices = num_choices
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
attention_mask = None
|
|
if self.use_attention_mask:
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
config = ElectraConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
embedding_size=self.embedding_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, token_type_ids, attention_mask
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, token_type_ids, attention_mask = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_flax
|
|
class FlaxElectraModelTest(FlaxModelTesterMixin, unittest.TestCase):
|
|
|
|
test_head_masking = True
|
|
|
|
all_model_classes = (
|
|
(
|
|
FlaxElectraModel,
|
|
FlaxElectraForCausalLM,
|
|
FlaxElectraForMaskedLM,
|
|
FlaxElectraForPreTraining,
|
|
FlaxElectraForTokenClassification,
|
|
FlaxElectraForQuestionAnswering,
|
|
FlaxElectraForMultipleChoice,
|
|
FlaxElectraForSequenceClassification,
|
|
)
|
|
if is_flax_available()
|
|
else ()
|
|
)
|
|
|
|
def setUp(self):
|
|
self.model_tester = FlaxElectraModelTester(self)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_class_name in self.all_model_classes:
|
|
if model_class_name == FlaxElectraForMaskedLM:
|
|
model = model_class_name.from_pretrained("google/electra-small-generator")
|
|
else:
|
|
model = model_class_name.from_pretrained("google/electra-small-discriminator")
|
|
outputs = model(np.ones((1, 1)))
|
|
self.assertIsNotNone(outputs)
|