mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Draft fast image processors * Draft working fast version * py3.8 compatible cache * Enable loading fast image processors through auto * Tidy up; rescale behaviour based on input type * Enable tests for fast image processors * Smarter rescaling * Don't default to Fast * Safer imports * Add necessary Pillow requirement * Woops * Add AutoImageProcessor test * Fix up * Fix test for imagegpt * Fix test * Review comments * Add warning for TF and JAX input types * Rearrange * Return transforms * NumpyToTensor transformation * Rebase - include changes from upstream in ImageProcessingMixin * Safe typing * Fix up * convert mean/std to tesnor to rescale * Don't store transforms in state * Fix up * Update src/transformers/image_processing_utils_fast.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Warn if fast image processor available * Update src/transformers/models/vit/image_processing_vit_fast.py * Transpose incoming numpy images to be in CHW format * Update mapping names based on packages, auto set fast to None * Fix up * Fix * Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test * Update src/transformers/models/vit/image_processing_vit_fast.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Add equivalence and speed tests * Fix up --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
183 lines
7.2 KiB
Python
183 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import Swin2SRImageProcessor
|
|
from transformers.image_transforms import get_image_size
|
|
|
|
|
|
class Swin2SRImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_pad=True,
|
|
pad_size=8,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
self.pad_size = pad_size
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_pad": self.do_pad,
|
|
"pad_size": self.pad_size,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
img = images[0]
|
|
|
|
if isinstance(img, Image.Image):
|
|
input_width, input_height = img.size
|
|
else:
|
|
input_height, input_width = img.shape[-2:]
|
|
|
|
pad_height = (input_height // self.pad_size + 1) * self.pad_size - input_height
|
|
pad_width = (input_width // self.pad_size + 1) * self.pad_size - input_width
|
|
|
|
return self.num_channels, input_height + pad_height, input_width + pad_width
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Swin2SRImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = Swin2SRImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processor, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processor, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processor, "do_pad"))
|
|
self.assertTrue(hasattr(image_processor, "pad_size"))
|
|
|
|
def calculate_expected_size(self, image):
|
|
old_height, old_width = get_image_size(image)
|
|
size = self.image_processor_tester.pad_size
|
|
|
|
pad_height = (old_height // size + 1) * size - old_height
|
|
pad_width = (old_width // size + 1) * size - old_width
|
|
return old_height + pad_height, old_width + pad_width
|
|
|
|
# Swin2SRImageProcessor does not support batched input
|
|
def test_call_pil(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Swin2SRImageProcessor does not support batched input
|
|
def test_call_numpy(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Swin2SRImageProcessor does not support batched input
|
|
def test_call_numpy_4_channels(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(
|
|
image_inputs[0], return_tensors="pt", input_data_format="channels_first"
|
|
).pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
self.image_processor_tester.num_channels = 3
|
|
|
|
# Swin2SRImageProcessor does not support batched input
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|