transformers/examples/multiple-choice
Patrick von Platen cb38ffcc5e
[PretrainedFeatureExtractor] + Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2Tokenizer (#10324)
* push to show

* small improvement

* small improvement

* Update src/transformers/feature_extraction_utils.py

* Update src/transformers/feature_extraction_utils.py

* implement base

* add common tests

* make all tests pass for wav2vec2

* make padding work & add more tests

* finalize feature extractor utils

* add call method to feature extraction

* finalize feature processor

* finish tokenizer

* finish general processor design

* finish tests

* typo

* remove bogus file

* finish docstring

* add docs

* finish docs

* small fix

* correct docs

* save intermediate

* load changes

* apply changes

* apply changes to doc

* change tests

* apply surajs recommend

* final changes

* Apply suggestions from code review

* fix typo

* fix import

* correct docstring
2021-02-25 17:42:46 +03:00
..
README.md Add new run_swag example (#9175) 2020-12-18 14:19:24 -05:00
requirements.txt Reorganize examples (#9010) 2020-12-11 10:07:02 -05:00
run_swag.py [PretrainedFeatureExtractor] + Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2Tokenizer (#10324) 2021-02-25 17:42:46 +03:00
run_tf_multiple_choice.py [examples] make run scripts executable (#10037) 2021-02-05 15:51:18 -08:00
utils_multiple_choice.py Black 20 release 2020-08-26 17:20:22 +02:00

Multiple Choice

Based on the script run_swag.py.

Fine-tuning on SWAG

python examples/multiple-choice/run_swag.py \
--model_name_or_path roberta-base \
--do_train \
--do_eval \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--overwrite_output

Training with the defined hyper-parameters yields the following results:

***** Eval results *****
eval_acc = 0.8338998300509847
eval_loss = 0.44457291918821606

Tensorflow

export SWAG_DIR=/path/to/swag_data_dir
python ./examples/multiple-choice/run_tf_multiple_choice.py \
--task_name swag \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--logging-dir logs \
--gradient_accumulation_steps 2 \
--overwrite_output

Run it in colab

Open In Colab