transformers/tests/test_pipelines_common.py
Thomas Wolf f4e04cd2c6
[breaking|pipelines|tokenizers] Adding slow-fast tokenizers equivalence tests pipelines - Removing sentencepiece as a required dependency (#8073)
* Fixing roberta for slow-fast tests

* WIP getting equivalence on pipelines

* slow-to-fast equivalence - working on question-answering pipeline

* optional FAISS tests

* Pipeline Q&A

* Move pipeline tests to their own test job again

* update tokenizer to add sequence id methods

* update to tokenizers 0.9.4

* set sentencepiecce as optional

* clean up squad

* clean up pipelines to use sequence_ids

* style/quality

* wording

* Switch to use_fast = True by default

* update tests for use_fast at True by default

* fix rag tokenizer test

* removing protobuf from required dependencies

* fix NER test for use_fast = True by default

* fixing example tests (Q&A examples use slow tokenizers for now)

* protobuf in main deps extras["sentencepiece"] and example deps

* fix protobug install test

* try to fix seq2seq by switching to slow tokenizers for now

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-11-15 22:50:59 +01:00

231 lines
8.3 KiB
Python

from typing import List, Optional
from unittest import mock
from transformers import is_tf_available, is_torch_available, pipeline
from transformers.pipelines import Pipeline
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow
from transformers.tokenization_utils_base import to_py_obj
VALID_INPUTS = ["A simple string", ["list of strings"]]
@is_pipeline_test
class CustomInputPipelineCommonMixin:
pipeline_task = None
pipeline_loading_kwargs = {} # Additional kwargs to load the pipeline with
pipeline_running_kwargs = {} # Additional kwargs to run the pipeline with
small_models = [] # Models tested without the @slow decorator
large_models = [] # Models tested with the @slow decorator
valid_inputs = VALID_INPUTS # Some inputs which are valid to compare fast and slow tokenizers
def setUp(self) -> None:
if not is_tf_available() and not is_torch_available():
return # Currently no JAX pipelines
# Download needed checkpoints
models = self.small_models
if _run_slow_tests:
models = models + self.large_models
for model_name in models:
if is_torch_available():
pipeline(
self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="pt",
**self.pipeline_loading_kwargs,
)
if is_tf_available():
pipeline(
self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="tf",
**self.pipeline_loading_kwargs,
)
@require_torch
@slow
def test_pt_defaults(self):
pipeline(self.pipeline_task, framework="pt", **self.pipeline_loading_kwargs)
@require_tf
@slow
def test_tf_defaults(self):
pipeline(self.pipeline_task, framework="tf", **self.pipeline_loading_kwargs)
@require_torch
def test_torch_small(self):
for model_name in self.small_models:
nlp = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="pt",
**self.pipeline_loading_kwargs,
)
self._test_pipeline(nlp)
@require_tf
def test_tf_small(self):
for model_name in self.small_models:
nlp = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="tf",
**self.pipeline_loading_kwargs,
)
self._test_pipeline(nlp)
@require_torch
@slow
def test_torch_large(self):
for model_name in self.large_models:
nlp = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="pt",
**self.pipeline_loading_kwargs,
)
self._test_pipeline(nlp)
@require_tf
@slow
def test_tf_large(self):
for model_name in self.large_models:
nlp = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="tf",
**self.pipeline_loading_kwargs,
)
self._test_pipeline(nlp)
def _test_pipeline(self, nlp: Pipeline):
raise NotImplementedError
@require_torch
def test_compare_slow_fast_torch(self):
for model_name in self.small_models:
nlp_slow = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="pt",
use_fast=False,
**self.pipeline_loading_kwargs,
)
nlp_fast = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="pt",
use_fast=True,
**self.pipeline_loading_kwargs,
)
self._compare_slow_fast_pipelines(nlp_slow, nlp_fast, method="forward")
@require_tf
def test_compare_slow_fast_tf(self):
for model_name in self.small_models:
nlp_slow = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="tf",
use_fast=False,
**self.pipeline_loading_kwargs,
)
nlp_fast = pipeline(
task=self.pipeline_task,
model=model_name,
tokenizer=model_name,
framework="tf",
use_fast=True,
**self.pipeline_loading_kwargs,
)
self._compare_slow_fast_pipelines(nlp_slow, nlp_fast, method="call")
def _compare_slow_fast_pipelines(self, nlp_slow: Pipeline, nlp_fast: Pipeline, method: str):
"""We check that the inputs to the models forward passes are identical for
slow and fast tokenizers.
"""
with mock.patch.object(
nlp_slow.model, method, wraps=getattr(nlp_slow.model, method)
) as mock_slow, mock.patch.object(nlp_fast.model, method, wraps=getattr(nlp_fast.model, method)) as mock_fast:
for inputs in self.valid_inputs:
if isinstance(inputs, dict):
inputs.update(self.pipeline_running_kwargs)
_ = nlp_slow(**inputs)
_ = nlp_fast(**inputs)
else:
_ = nlp_slow(inputs, **self.pipeline_running_kwargs)
_ = nlp_fast(inputs, **self.pipeline_running_kwargs)
mock_slow.assert_called()
mock_fast.assert_called()
self.assertEqual(len(mock_slow.call_args_list), len(mock_fast.call_args_list))
for mock_slow_call_args, mock_fast_call_args in zip(
mock_slow.call_args_list, mock_slow.call_args_list
):
slow_call_args, slow_call_kwargs = mock_slow_call_args
fast_call_args, fast_call_kwargs = mock_fast_call_args
slow_call_args, slow_call_kwargs = to_py_obj(slow_call_args), to_py_obj(slow_call_kwargs)
fast_call_args, fast_call_kwargs = to_py_obj(fast_call_args), to_py_obj(fast_call_kwargs)
self.assertEqual(slow_call_args, fast_call_args)
self.assertDictEqual(slow_call_kwargs, fast_call_kwargs)
@is_pipeline_test
class MonoInputPipelineCommonMixin(CustomInputPipelineCommonMixin):
"""A version of the CustomInputPipelineCommonMixin
with a predefined `_test_pipeline` method.
"""
mandatory_keys = {} # Keys which should be in the output
invalid_inputs = [None] # inputs which are not allowed
expected_multi_result: Optional[List] = None
expected_check_keys: Optional[List[str]] = None
def _test_pipeline(self, nlp: Pipeline):
self.assertIsNotNone(nlp)
mono_result = nlp(self.valid_inputs[0], **self.pipeline_running_kwargs)
self.assertIsInstance(mono_result, list)
self.assertIsInstance(mono_result[0], (dict, list))
if isinstance(mono_result[0], list):
mono_result = mono_result[0]
for key in self.mandatory_keys:
self.assertIn(key, mono_result[0])
multi_result = [nlp(input, **self.pipeline_running_kwargs) for input in self.valid_inputs]
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], (dict, list))
if self.expected_multi_result is not None:
for result, expect in zip(multi_result, self.expected_multi_result):
for key in self.expected_check_keys or []:
self.assertEqual(
set([o[key] for o in result]),
set([o[key] for o in expect]),
)
if isinstance(multi_result[0], list):
multi_result = multi_result[0]
for result in multi_result:
for key in self.mandatory_keys:
self.assertIn(key, result)
self.assertRaises(Exception, nlp, self.invalid_inputs)