transformers/docker
Mohamed Mekkouri f491096f7d
Fix docker CI : install autogptq from source (#35000)
* Fixed Docker

* Test ci

* Finally

* add comment
2024-11-28 16:31:36 +01:00
..
transformers-all-latest-gpu Use torch 2.5 in scheduled CI (#34465) 2024-10-30 14:54:10 +01:00
transformers-doc-builder Use python 3.10 for docbuild (#28399) 2024-01-11 14:39:49 +01:00
transformers-gpu TF: TF 2.10 unpin + related onnx test skips (#18995) 2022-09-12 19:30:27 +01:00
transformers-past-gpu Byebye pytorch 1.9 (#24080) 2023-06-16 16:38:23 +02:00
transformers-pytorch-amd-gpu CI: update to ROCm 6.0.2 and test MI300 (#30266) 2024-05-13 18:14:36 +02:00
transformers-pytorch-deepspeed-amd-gpu fix: Fixed pydantic required version in dockerfiles to make it compatible with DeepSpeed (#33105) 2024-08-26 17:10:36 +02:00
transformers-pytorch-deepspeed-latest-gpu fix: Fixed pydantic required version in dockerfiles to make it compatible with DeepSpeed (#33105) 2024-08-26 17:10:36 +02:00
transformers-pytorch-deepspeed-nightly-gpu Update CUDA versions for DeepSpeed (#27853) 2023-12-05 16:15:21 -05:00
transformers-pytorch-gpu Use torch 2.5 in scheduled CI (#34465) 2024-10-30 14:54:10 +01:00
transformers-pytorch-tpu Rename master to main for notebooks links and leftovers (#16397) 2022-03-25 09:12:23 -04:00
transformers-quantization-latest-gpu Fix docker CI : install autogptq from source (#35000) 2024-11-28 16:31:36 +01:00
transformers-tensorflow-gpu pin tensorflow_probability<0.22 in docker files (#34381) 2024-10-28 11:59:46 +01:00
consistency.dockerfile Support reading tiktoken tokenizer.model file (#31656) 2024-09-06 14:24:02 +02:00
custom-tokenizers.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
examples-tf.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
examples-torch.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
exotic-models.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
jax-light.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
pipeline-tf.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
pipeline-torch.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
quality.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
README.md Add documentation for docker (#33156) 2024-10-14 11:58:45 +02:00
tf-light.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
torch-jax-light.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00
torch-light.dockerfile Support reading tiktoken tokenizer.model file (#31656) 2024-09-06 14:24:02 +02:00
torch-tf-light.dockerfile unpin uv (#31055) 2024-05-27 13:47:47 +02:00

Dockers for transformers

In this folder you will find various docker files, and some subfolders.

  • dockerfiles (ex: consistency.dockerfile) present under ~/docker are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example torch-light is a very light weights container (703MiB).
  • subfloder contain dockerfiles used for our slow CIs, which can be used for GPU tasks, but they are BIG as they were not specifically designed for a single model / single task. Thus the ~/docker/transformers-pytorch-gpu includes additional dependencies to allow us to run ALL model tests (say librosa or tesseract, which you do not need to run LLMs)

Note that in both case, you need to run uv pip install -e ., which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the transformers code is thus updated.

We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! 🤗