mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-25 07:18:58 +06:00

* Removed `max_length` from being mandatory within `generate`. - Moving on to fully using `StoppingCriteria` for `greedy` and `sample` modes. - `max_length` still used for `beam_search` and `group_beam_search` (Follow up PR) - Fixes a bug with MaxLengthStoppingCriteria (we should stop as soon a we hit the max_length, the comparison needs to be or equal, that affects the tests). - Added options to use `logits_processor` and `stopping_criteria` directly within `generate` function (so some users can define their own `logits_processor` and `stopping_criteria`). - Modified the backward compat tests to make sure we issue a warning. * Fix `max_length` argument in `generate`. * Moving validate to being functional. - Renamed `smax_length` to `stoppping_max_length`. * Removing `logits_processor` and `stopping_criteria` from `generate` arguments. * Deepcopy. * Fix global variable name.
79 lines
2.4 KiB
Python
79 lines
2.4 KiB
Python
import time
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
|
|
from .test_modeling_common import ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.generation_stopping_criteria import (
|
|
MaxLengthCriteria,
|
|
MaxTimeCriteria,
|
|
StoppingCriteriaList,
|
|
validate_stopping_criteria,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class StoppingCriteriaTestCase(unittest.TestCase):
|
|
def _get_tensors(self, length):
|
|
batch_size = 3
|
|
vocab_size = 250
|
|
|
|
input_ids = ids_tensor((batch_size, length), vocab_size)
|
|
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
|
|
return input_ids, scores
|
|
|
|
def test_list_criteria(self):
|
|
input_ids, scores = self._get_tensors(5)
|
|
|
|
criteria = StoppingCriteriaList(
|
|
[
|
|
MaxLengthCriteria(max_length=10),
|
|
MaxTimeCriteria(max_time=0.1),
|
|
]
|
|
)
|
|
|
|
self.assertFalse(criteria(input_ids, scores))
|
|
|
|
input_ids, scores = self._get_tensors(9)
|
|
self.assertFalse(criteria(input_ids, scores))
|
|
|
|
input_ids, scores = self._get_tensors(10)
|
|
self.assertTrue(criteria(input_ids, scores))
|
|
|
|
def test_max_length_criteria(self):
|
|
criteria = MaxLengthCriteria(max_length=10)
|
|
|
|
input_ids, scores = self._get_tensors(5)
|
|
self.assertFalse(criteria(input_ids, scores))
|
|
|
|
input_ids, scores = self._get_tensors(9)
|
|
self.assertFalse(criteria(input_ids, scores))
|
|
|
|
input_ids, scores = self._get_tensors(10)
|
|
self.assertTrue(criteria(input_ids, scores))
|
|
|
|
def test_max_time_criteria(self):
|
|
input_ids, scores = self._get_tensors(5)
|
|
|
|
criteria = MaxTimeCriteria(max_time=0.1)
|
|
self.assertFalse(criteria(input_ids, scores))
|
|
|
|
criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2)
|
|
self.assertTrue(criteria(input_ids, scores))
|
|
|
|
def test_validate_stopping_criteria(self):
|
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10)
|
|
|
|
with self.assertWarns(UserWarning):
|
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11)
|
|
|
|
stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11)
|
|
|
|
self.assertEqual(len(stopping_criteria), 1)
|