mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 14:50:07 +06:00
152 lines
7.4 KiB
Python
152 lines
7.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 Hugging Face inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import AlbertTokenizer, AlbertTokenizerFast
|
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, slow
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class AlbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
|
|
tokenizer_class = AlbertTokenizer
|
|
rust_tokenizer_class = AlbertTokenizerFast
|
|
test_rust_tokenizer = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "this is a test"
|
|
output_text = "this is a test"
|
|
return input_text, output_text
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
sequence = "I was born in 92000, and this is falsé."
|
|
|
|
tokens = tokenizer.tokenize(sequence)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
ids = tokenizer.encode(sequence)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁test"])
|
|
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289])
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(ids, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."],
|
|
)
|
|
|
|
def test_sequence_builders(self):
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
|
|
|
|
text = tokenizer.encode("sequence builders")
|
|
text_2 = tokenizer.encode("multi-sequence build")
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
|
|
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
|
|
tokenizer.sep_token_id
|
|
]
|
|
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
tokenizer_classes = [self.tokenizer_class]
|
|
if self.test_rust_tokenizer:
|
|
tokenizer_classes.append(self.rust_tokenizer_class)
|
|
|
|
for tokenizer_class in tokenizer_classes:
|
|
tokenizer = tokenizer_class.from_pretrained("albert-base-v2")
|
|
|
|
sequences = [
|
|
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations",
|
|
"ALBERT incorporates two parameter reduction techniques",
|
|
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary embedding matrix into two small matrices, we separate the size of the hidden layers from the size of vocabulary embedding.", # noqa: E231
|
|
]
|
|
|
|
encoding = tokenizer(sequences, padding=True)
|
|
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]]
|
|
|
|
# fmt: off
|
|
expected_encoding = {
|
|
'input_ids': [
|
|
[2, 2953, 45, 21, 13, 10601, 11502, 26, 1119, 8, 8542, 3762, 69, 2477, 16, 816, 18667, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[2, 2953, 13760, 81, 18906, 5895, 4212, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[2, 14, 64, 53, 25, 21, 3932, 1333, 11911, 69, 3258, 18906, 1829, 9, 34, 121, 960, 14717, 14, 370, 18630, 11911, 69, 3258, 8187, 77, 81, 284, 24849, 15, 95, 1725, 14, 1072, 16, 14, 3689, 9124, 37, 14, 1072, 16, 18630, 11911, 69, 3258, 9, 3]], # noqa: E231
|
|
'token_type_ids': [
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], # noqa: E231
|
|
'attention_mask': [
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # noqa: E231
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # noqa: E231
|
|
]
|
|
}
|
|
|
|
expected_decoded_sequence = [
|
|
"albert: a lite bert for self-supervised learning of language representations",
|
|
'albert incorporates two parameter reduction techniques',
|
|
'the first one is a factorized embedding parameterization. by decomposing the large vocabulary embedding matrix into two small matrices, we separate the size of the hidden layers from the size of vocabulary embedding.' # noqa: E231
|
|
]
|
|
# fmt: on
|
|
|
|
self.assertDictEqual(encoding.data, expected_encoding)
|
|
|
|
for expected, decoded in zip(expected_decoded_sequence, decoded_sequences):
|
|
self.assertEqual(expected, decoded)
|