mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 14:50:07 +06:00
79 lines
3.0 KiB
Python
79 lines
3.0 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
|
|
from transformers.testing_utils import require_flax, slow
|
|
|
|
|
|
if is_flax_available():
|
|
import jax
|
|
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
|
|
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
|
|
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
|
|
|
|
|
|
@require_flax
|
|
class FlaxAutoModelTest(unittest.TestCase):
|
|
@slow
|
|
def test_bert_from_pretrained(self):
|
|
for model_name in ["bert-base-cased", "bert-large-uncased"]:
|
|
with self.subTest(model_name):
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = FlaxAutoModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, FlaxBertModel)
|
|
|
|
@slow
|
|
def test_roberta_from_pretrained(self):
|
|
for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
|
|
with self.subTest(model_name):
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
self.assertIsNotNone(config)
|
|
self.assertIsInstance(config, BertConfig)
|
|
|
|
model = FlaxAutoModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertIsInstance(model, FlaxRobertaModel)
|
|
|
|
@slow
|
|
def test_bert_jax_jit(self):
|
|
for model_name in ["bert-base-cased", "bert-large-uncased"]:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = FlaxBertModel.from_pretrained(model_name)
|
|
tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)
|
|
|
|
@jax.jit
|
|
def eval(**kwargs):
|
|
return model(**kwargs)
|
|
|
|
eval(**tokens).block_until_ready()
|
|
|
|
@slow
|
|
def test_roberta_jax_jit(self):
|
|
for model_name in ["roberta-base-cased", "roberta-large-uncased"]:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = FlaxRobertaModel.from_pretrained(model_name)
|
|
tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)
|
|
|
|
@jax.jit
|
|
def eval(**kwargs):
|
|
return model(**kwargs)
|
|
|
|
eval(**tokens).block_until_ready()
|