![]() * memory tracker metrics * go back to eval for somewhat consistency * handle no-gpu case * deal with stackable eval calls * restore callback order * style * simplify the API * add test * docs * consistently use eval_ prefix * improve docs * Update src/transformers/trainer_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * rename method * style Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md | ||
requirements.txt | ||
run_seq2seq.py |
Sequence to Sequence Training and Evaluation
This directory contains examples for finetuning and evaluating transformers on summarization and translation tasks.
Please tag @patil-suraj with any issues/unexpected behaviors, or send a PR!
For deprecated bertabs
instructions, see bertabs/README.md
.
For the old finetune_trainer.py
and related utils, see examples/legacy/seq2seq
.
Supported Architectures
BartForConditionalGeneration
MarianMTModel
PegasusForConditionalGeneration
MBartForConditionalGeneration
FSMTForConditionalGeneration
T5ForConditionalGeneration
run_seq2seq.py
is a lightweight example of how to download and preprocess a dataset from the 🤗 Datasets library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it.
For custom datasets in jsonlines
format please see: https://huggingface.co/docs/datasets/loading_datasets.html#json-files
Here is an example on a summarization task:
python examples/seq2seq/run_seq2seq.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task summarization \
--dataset_name xsum \
--output_dir ~/tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
And here is how you would use it on your own files (replace path_to_csv_or_jsonlines_file
, text_column_name
and summary_column_name
by the relevant values):
python examples/seq2seq/run_seq2seq.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task summarization \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--output_dir ~/tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate \
--text_column text_column_name \
--summary_column summary_column_name
The training and validation files should have a column for the inputs texts and a column for the summaries.
Here is an example of a translation fine-tuning:
python examples/seq2seq/run_seq2seq.py \
--model_name_or_path sshleifer/student_marian_en_ro_6_1 \
--do_train \
--do_eval \
--task translation_en_to_ro \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_lang en_XX \
--target_lang ro_RO\
--output_dir ~/tmp/tst-translation \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
And here is how you would use it on your own files (replace path_to_jsonlines_file
, by the relevant values):
python examples/seq2seq/run_seq2seq.py \
--model_name_or_path sshleifer/student_marian_en_ro_6_1 \
--do_train \
--do_eval \
--task translation_en_to_ro \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_lang en_XX \
--target_lang ro_RO\
--train_file path_to_jsonlines_file \
--validation_file path_to_jsonlines_file \
--output_dir ~/tmp/tst-translation \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
Here the files are expected to be JSONLINES files, with each input being a dictionary with a key "translation"
containing one key per language (here "en"
and "ro"
).