mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* unispeech * add copy from * remove hubert copy from * finish for today * add unispeech-sat * adapt more * up * up * up * up * add modeling * add tests * up * up * finish * up * Apply suggestions from code review * up * up * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * up * up Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
89 lines
4.1 KiB
ReStructuredText
89 lines
4.1 KiB
ReStructuredText
..
|
|
Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
UniSpeech
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The UniSpeech model was proposed in `UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data
|
|
<https://arxiv.org/abs/2101.07597>`__ by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael
|
|
Zeng, Xuedong Huang .
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both
|
|
unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive
|
|
self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture
|
|
information more correlated with phonetic structures and improve the generalization across languages and domains. We
|
|
evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The
|
|
results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech
|
|
recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all
|
|
testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task,
|
|
i.e., a relative word error rate reduction of 6% against the previous approach.*
|
|
|
|
Tips:
|
|
|
|
- UniSpeech is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. Please
|
|
use :class:`~transformers.Wav2Vec2Processor` for the feature extraction.
|
|
- UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be
|
|
decoded using :class:`~transformers.Wav2Vec2CTCTokenizer`.
|
|
|
|
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__. The Authors' code can be
|
|
found `here <https://github.com/microsoft/UniSpeech/tree/main/UniSpeech>`__.
|
|
|
|
|
|
UniSpeechConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.UniSpeechConfig
|
|
:members:
|
|
|
|
|
|
UniSpeech specific outputs
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.models.unispeech.modeling_unispeech.UniSpeechBaseModelOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.unispeech.modeling_unispeech.UniSpeechForPreTrainingOutput
|
|
:members:
|
|
|
|
|
|
UniSpeechModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.UniSpeechModel
|
|
:members: forward
|
|
|
|
|
|
UniSpeechForCTC
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.UniSpeechForCTC
|
|
:members: forward
|
|
|
|
|
|
UniSpeechForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.UniSpeechForSequenceClassification
|
|
:members: forward
|
|
|
|
|
|
UniSpeechForPreTraining
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.UniSpeechForPreTraining
|
|
:members: forward
|