mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 11:08:23 +06:00

* First draft * Make style & quality * Improve conversion script * Add print statement to see actual slice * Make absolute tolerance smaller * Fix image classification models * Add post_process_semantic method * Disable padding * Improve conversion script * Rename to ForSemanticSegmentation, add integration test, remove post_process methods * Improve docs * Fix code quality * Fix feature extractor tests * Fix tests for image classification model * Delete file * Add is_torch_available to feature extractor * Improve documentation of feature extractor methods * Apply suggestions from @sgugger's code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Apply some more suggestions of code review * Rebase with master * Fix rebase issues * Make sure model only outputs hidden states when the user wants to * Apply suggestions from code review * Add pad method * Support padding of 2d images * Add print statement * Add print statement * Move padding method to SegformerFeatureExtractor * Fix issue * Add casting of segmentation maps * Add test for padding * Add small note about padding Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
81 lines
4.0 KiB
ReStructuredText
81 lines
4.0 KiB
ReStructuredText
..
|
|
Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
SegFormer
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The SegFormer model was proposed in `SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
|
|
<https://arxiv.org/abs/2105.15203>`__ by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping
|
|
Luo. The model consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great
|
|
results on image segmentation benchmarks such as ADE20K and Cityscapes.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with
|
|
lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel
|
|
hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding,
|
|
thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution
|
|
differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from
|
|
different layers, and thus combining both local attention and global attention to render powerful representations. We
|
|
show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our
|
|
approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance
|
|
and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters,
|
|
being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on
|
|
Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C.*
|
|
|
|
This model was contributed by `nielsr <https://huggingface.co/nielsr>`__. The original code can be found `here
|
|
<https://github.com/NVlabs/SegFormer>`__.
|
|
|
|
SegformerConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerConfig
|
|
:members:
|
|
|
|
|
|
SegformerFeatureExtractor
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerFeatureExtractor
|
|
:members: __call__
|
|
|
|
|
|
SegformerModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerModel
|
|
:members: forward
|
|
|
|
|
|
SegformerDecodeHead
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerDecodeHead
|
|
:members: forward
|
|
|
|
|
|
SegformerForImageClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerForImageClassification
|
|
:members: forward
|
|
|
|
|
|
SegformerForSemanticSegmentation
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.SegformerForSemanticSegmentation
|
|
:members: forward
|