transformers/docs/source/model_doc/gpt2.rst
Sidd Karamcheti 3a8de58c51
Add Mistral GPT-2 Stability Tweaks (#13573)
* Add layer-wise scaling

* Add reorder & upcasting argument

* Add OpenAI GPT-2 weight initialization scheme

* start `layer_idx` count at zero for consistency

* disentangle attn and reordered and upscaled attn function

* rename `scale_attn_by_layer` to `scale_attn_by_layer_id`

* make autocast from amp compatible with pytorch<1.6

* fix docstring

* style fixes

* Add fixes from PR feedback, style tweaks

* Fix doc whitespace

* Reformat

* First pass scale_attn_by_layer_idx and reorder_and_upcast_attn tests

* Rename scale_attn_by_layer_idx, add tip

* Remove extra newline

* add test for weight initialization

* update code format

* add assert check weights are fp32

* remove assert

* Fix incorrect merge

* Fix shape mismatch in baddbmm

* Add generation test for Mistral flags

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Keshav Santhanam <keshav2@stanford.edu>
Co-authored-by: J38 <jebolton@stanford.edu>
2021-10-04 07:37:09 -04:00

166 lines
6.9 KiB
ReStructuredText

..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
OpenAI GPT2
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OpenAI GPT-2 model was proposed in `Language Models are Unsupervised Multitask Learners
<https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf>`_ by Alec
Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. It's a causal (unidirectional)
transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.
The abstract from the paper is the following:
*GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million
web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than
10X the amount of data.*
Tips:
- GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
observed in the `run_generation.py` example script.
- The model can take the `past_key_values` (for PyTorch) or `past` (for TF) as input, which is the previously computed
key/value attention pairs. Using this (`past_key_values` or `past`) value prevents the model from re-computing
pre-computed values in the context of text generation. For PyTorch, see `past_key_values` argument of the
:meth:`~transformers.GPT2Model.forward` method, or for TF the `past` argument of the
:meth:`~transformers.TFGPT2Model.call` method for more information on its usage.
- Enabling the `scale_attn_by_inverse_layer_idx` and `reorder_and_upcast_attn` flags will apply the training stability
improvements from `Mistral <https://github.com/stanford-crfm/mistral/>`__ (for PyTorch only).
`Write With Transformer <https://transformer.huggingface.co/doc/gpt2-large>`__ is a webapp created and hosted by
Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five
different sizes: small, medium, large, xl and a distilled version of the small checkpoint: `distilgpt-2`.
This model was contributed by `thomwolf <https://huggingface.co/thomwolf>`__. The original code can be found `here
<https://openai.com/blog/better-language-models/>`__.
GPT2Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Config
:members:
GPT2Tokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Tokenizer
:members: save_vocabulary
GPT2TokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2TokenizerFast
:members:
GPT2 specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.gpt2.modeling_gpt2.GPT2DoubleHeadsModelOutput
:members:
.. autoclass:: transformers.models.gpt2.modeling_tf_gpt2.TFGPT2DoubleHeadsModelOutput
:members:
GPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2Model
:members: forward, parallelize, deparallelize
GPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2LMHeadModel
:members: forward, parallelize, deparallelize
GPT2DoubleHeadsModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2DoubleHeadsModel
:members: forward
GPT2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2ForSequenceClassification
:members: forward
GPT2ForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.GPT2ForTokenClassification
:members: forward
TFGPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFGPT2Model
:members: call
TFGPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFGPT2LMHeadModel
:members: call
TFGPT2DoubleHeadsModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFGPT2DoubleHeadsModel
:members: call
TFGPT2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFGPT2ForSequenceClassification
:members: call
TFSequenceClassifierOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast
:members:
FlaxGPT2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxGPT2Model
:members: __call__
FlaxGPT2LMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxGPT2LMHeadModel
:members: __call__