mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Init FNet * Update config * Fix config * Update model classes * Update tokenizers to use sentencepiece * Fix errors in model * Fix defaults in config * Remove position embedding type completely * Fix typo and take only real numbers * Fix type vocab size in configuration * Add projection layer to embeddings * Fix position ids bug in embeddings * Add minor changes * Add conversion script and remove CausalLM vestiges * Fix conversion script * Fix conversion script * Remove CausalLM Test * Update checkpoint names to dummy checkpoints * Add tokenizer mapping * Fix modeling file and corresponding tests * Add tokenization test file * Add PreTraining model test * Make style and quality * Make tokenization base tests work * Update docs * Add FastTokenizer tests * Fix fast tokenizer special tokens * Fix style and quality * Remove load_tf_weights vestiges * Add FNet to main README * Fix configuration example indentation * Comment tokenization slow test * Fix style * Add changes from review * Fix style * Remove bos and eos tokens from tokenizers * Add tokenizer slow test, TPU transforms, NSP * Add scipy check * Add scipy availabilty check to test * Fix tokenizer and use correct inputs * Remove remaining TODOs * Fix tests * Fix tests * Comment Fourier Test * Uncomment Fourier Test * Change to google checkpoint * Add changes from review * Fix activation function * Fix model integration test * Add more integration tests * Add comparison steps to MLM integration test * Fix style * Add masked tokenization fix * Improve mask tokenization fix * Fix index docs * Add changes from review * Fix issue * Fix failing import in test * some more fixes * correct fast tokenizer * finalize * make style * Remove additional tokenization logic * Set do_lower_case to False * Allow keeping accents * Fix tokenization test * Fix FNet Tokenizer Fast * fix tests * make style * Add tips to FNet docs Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
122 lines
5.5 KiB
ReStructuredText
122 lines
5.5 KiB
ReStructuredText
..
|
|
Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
FNet
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The FNet model was proposed in `FNet: Mixing Tokens with Fourier Transforms <https://arxiv.org/abs/2105.03824>`__ by
|
|
James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. The model replaces the self-attention layer in a BERT
|
|
model with a fourier transform which returns only the real parts of the transform. The model is significantly faster
|
|
than the BERT model because it has fewer parameters and is more memory efficient. The model achieves about 92-97%
|
|
accuracy of BERT counterparts on GLUE benchmark, and trains much faster than the BERT model. The abstract from the
|
|
paper is the following:
|
|
|
|
*We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the
|
|
self-attention sublayers with simple linear transformations that "mix" input tokens. These linear mixers, along with
|
|
standard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text
|
|
classification tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder
|
|
with a standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE
|
|
benchmark, but trains 80% faster on GPUs and 70% faster on TPUs at standard 512 input lengths. At longer input lengths,
|
|
our FNet model is significantly faster: when compared to the "efficient" Transformers on the Long Range Arena
|
|
benchmark, FNet matches the accuracy of the most accurate models, while outpacing the fastest models across all
|
|
sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory footprint
|
|
and is particularly efficient at smaller model sizes; for a fixed speed and accuracy budget, small FNet models
|
|
outperform Transformer counterparts.*
|
|
|
|
Tips on usage:
|
|
|
|
- The model was trained without an attention mask as it is based on Fourier Transform. The model was trained with
|
|
maximum sequence length 512 which includes pad tokens. Hence, it is highly recommended to use the same maximum
|
|
sequence length for fine-tuning and inference.
|
|
|
|
This model was contributed by `gchhablani <https://huggingface.co/gchhablani>`__. The original code can be found `here
|
|
<https://github.com/google-research/google-research/tree/master/f_net>`__.
|
|
|
|
FNetConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetConfig
|
|
:members:
|
|
|
|
|
|
FNetTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetTokenizer
|
|
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
|
|
create_token_type_ids_from_sequences, save_vocabulary
|
|
|
|
|
|
FNetTokenizerFast
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetTokenizerFast
|
|
:members:
|
|
|
|
|
|
FNetModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetModel
|
|
:members: forward
|
|
|
|
|
|
FNetForPreTraining
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForPreTraining
|
|
:members: forward
|
|
|
|
|
|
FNetForMaskedLM
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForMaskedLM
|
|
:members: forward
|
|
|
|
|
|
FNetForNextSentencePrediction
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForNextSentencePrediction
|
|
:members: forward
|
|
|
|
FNetForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForSequenceClassification
|
|
:members: forward
|
|
|
|
|
|
FNetForMultipleChoice
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForMultipleChoice
|
|
:members: forward
|
|
|
|
|
|
FNetForTokenClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForTokenClassification
|
|
:members: forward
|
|
|
|
|
|
FNetForQuestionAnswering
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.FNetForQuestionAnswering
|
|
:members: forward
|