transformers/docs/source/model_doc/fnet.rst
Gunjan Chhablani d8049331dc
Add FNet (#13045)
* Init FNet

* Update config

* Fix config

* Update model classes

* Update tokenizers to use sentencepiece

* Fix errors in model

* Fix defaults in config

* Remove position embedding type completely

* Fix typo and take only real numbers

* Fix type vocab size in configuration

* Add projection layer to embeddings

* Fix position ids bug in embeddings

* Add minor changes

* Add conversion script and remove CausalLM vestiges

* Fix conversion script

* Fix conversion script

* Remove CausalLM Test

* Update checkpoint names to dummy checkpoints

* Add tokenizer mapping

* Fix modeling file and corresponding tests

* Add tokenization test file

* Add PreTraining model test

* Make style and quality

* Make tokenization base tests work

* Update docs

* Add FastTokenizer tests

* Fix fast tokenizer special tokens

* Fix style and quality

* Remove load_tf_weights vestiges

* Add FNet to  main README

* Fix configuration example indentation

* Comment tokenization slow test

* Fix style

* Add changes from review

* Fix style

* Remove bos and eos tokens from tokenizers

* Add tokenizer slow test, TPU transforms, NSP

* Add scipy check

* Add scipy availabilty check to test

* Fix tokenizer and use correct inputs

* Remove remaining TODOs

* Fix tests

* Fix tests

* Comment Fourier Test

* Uncomment Fourier Test

* Change to google checkpoint

* Add changes from review

* Fix activation function

* Fix model integration test

* Add more integration tests

* Add comparison steps to MLM integration test

* Fix style

* Add masked tokenization fix

* Improve mask tokenization fix

* Fix index docs

* Add changes from review

* Fix issue

* Fix failing import in test

* some more fixes

* correct fast tokenizer

* finalize

* make style

* Remove additional tokenization logic

* Set do_lower_case to False

* Allow keeping accents

* Fix tokenization test

* Fix FNet Tokenizer Fast

* fix tests

* make style

* Add tips to FNet docs

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-09-20 13:24:30 +02:00

122 lines
5.5 KiB
ReStructuredText

..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
FNet
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FNet model was proposed in `FNet: Mixing Tokens with Fourier Transforms <https://arxiv.org/abs/2105.03824>`__ by
James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. The model replaces the self-attention layer in a BERT
model with a fourier transform which returns only the real parts of the transform. The model is significantly faster
than the BERT model because it has fewer parameters and is more memory efficient. The model achieves about 92-97%
accuracy of BERT counterparts on GLUE benchmark, and trains much faster than the BERT model. The abstract from the
paper is the following:
*We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the
self-attention sublayers with simple linear transformations that "mix" input tokens. These linear mixers, along with
standard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text
classification tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder
with a standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE
benchmark, but trains 80% faster on GPUs and 70% faster on TPUs at standard 512 input lengths. At longer input lengths,
our FNet model is significantly faster: when compared to the "efficient" Transformers on the Long Range Arena
benchmark, FNet matches the accuracy of the most accurate models, while outpacing the fastest models across all
sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory footprint
and is particularly efficient at smaller model sizes; for a fixed speed and accuracy budget, small FNet models
outperform Transformer counterparts.*
Tips on usage:
- The model was trained without an attention mask as it is based on Fourier Transform. The model was trained with
maximum sequence length 512 which includes pad tokens. Hence, it is highly recommended to use the same maximum
sequence length for fine-tuning and inference.
This model was contributed by `gchhablani <https://huggingface.co/gchhablani>`__. The original code can be found `here
<https://github.com/google-research/google-research/tree/master/f_net>`__.
FNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetConfig
:members:
FNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
FNetTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetTokenizerFast
:members:
FNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetModel
:members: forward
FNetForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForPreTraining
:members: forward
FNetForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForMaskedLM
:members: forward
FNetForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForNextSentencePrediction
:members: forward
FNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForSequenceClassification
:members: forward
FNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForMultipleChoice
:members: forward
FNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForTokenClassification
:members: forward
FNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForQuestionAnswering
:members: forward