transformers/docs/source/model_doc/distilbert.rst
2021-09-20 15:10:33 -04:00

198 lines
8.0 KiB
ReStructuredText

..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
DistilBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The DistilBERT model was proposed in the blog post `Smaller, faster, cheaper, lighter: Introducing DistilBERT, a
distilled version of BERT <https://medium.com/huggingface/distilbert-8cf3380435b5>`__, and the paper `DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__. DistilBERT is a
small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than
`bert-base-uncased`, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language
understanding benchmark.
The abstract from the paper is the following:
*As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP),
operating these large models in on-the-edge and/or under constrained computational training or inference budgets
remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation
model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger
counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage
knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT model by
40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive
biases learned by larger models during pretraining, we introduce a triple loss combining language modeling,
distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we
demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device
study.*
Tips:
- DistilBERT doesn't have :obj:`token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token :obj:`tokenizer.sep_token` (or :obj:`[SEP]`).
- DistilBERT doesn't have options to select the input positions (:obj:`position_ids` input). This could be added if
necessary though, just let us know if you need this option.
This model was contributed by `victorsanh <https://huggingface.co/victorsanh>`__. This model jax version was
contributed by `kamalkraj <https://huggingface.co/kamalkraj>`__. The original code can be found :prefix_link:`here
<examples/research_projects/distillation>`.
DistilBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertConfig
:members:
DistilBertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertTokenizer
:members:
DistilBertTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertTokenizerFast
:members:
DistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertModel
:members: forward
DistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForMaskedLM
:members: forward
DistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForSequenceClassification
:members: forward
DistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForMultipleChoice
:members: forward
DistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForTokenClassification
:members: forward
DistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DistilBertForQuestionAnswering
:members: forward
TFDistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertModel
:members: call
TFDistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForMaskedLM
:members: call
TFDistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForSequenceClassification
:members: call
TFDistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForMultipleChoice
:members: call
TFDistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForTokenClassification
:members: call
TFDistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDistilBertForQuestionAnswering
:members: call
FlaxDistilBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertModel
:members: __call__
FlaxDistilBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForMaskedLM
:members: __call__
FlaxDistilBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForSequenceClassification
:members: __call__
FlaxDistilBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForMultipleChoice
:members: __call__
FlaxDistilBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForTokenClassification
:members: __call__
FlaxDistilBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxDistilBertForQuestionAnswering
:members: __call__