mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Add the pre-trained BARTpho model * Add the pre-trained BARTpho model * Add the pre-trained BARTpho model * Fix incorrectly sorted and/or formatted imports * Fix incorrectly sorted and/or formatted style * Fix check_dummies * Fix check_dummies * Fix check_dummies * Update docs/source/model_doc/bartpho.rst Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/transformers/models/bartpho/__init__.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/transformers/models/bartpho/tokenization_bartpho.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update tests/test_tokenization_bartpho.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/transformers/models/bartpho/tokenization_bartpho.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update tests/test_tokenization_bartpho.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update docs/source/model_doc/bartpho.rst Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update docs/source/model_doc/bartpho.rst Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/bartpho/__init__.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Add the pre-trained BARTpho model * Add Tips section in doc and details of monolingual_vocab_file * Fix conflicts * Add another tip related to monolingual_vocab_file * Readd dependency_versions_table.py * Handle failing checks * Remove test_list.txt * Remove md5sum.saved * Revise Readme.md Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
65 lines
2.9 KiB
ReStructuredText
65 lines
2.9 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
BERTweet
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The BERTweet model was proposed in `BERTweet: A pre-trained language model for English Tweets
|
|
<https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf>`__ by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
|
|
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
|
|
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
|
|
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
|
|
Part-of-speech tagging, Named-entity recognition and text classification.*
|
|
|
|
Example of use:
|
|
|
|
.. code-block::
|
|
|
|
>>> import torch
|
|
>>> from transformers import AutoModel, AutoTokenizer
|
|
|
|
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
|
|
|
>>> # For transformers v4.x+:
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
|
|
|
|
>>> # For transformers v3.x:
|
|
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
|
|
|
>>> # INPUT TWEET IS ALREADY NORMALIZED!
|
|
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
|
|
|
|
>>> input_ids = torch.tensor([tokenizer.encode(line)])
|
|
|
|
>>> with torch.no_grad():
|
|
... features = bertweet(input_ids) # Models outputs are now tuples
|
|
|
|
>>> # With TensorFlow 2.0+:
|
|
>>> # from transformers import TFAutoModel
|
|
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
|
|
|
|
This model was contributed by `dqnguyen <https://huggingface.co/dqnguyen>`__. The original code can be found `here
|
|
<https://github.com/VinAIResearch/BERTweet>`__.
|
|
|
|
BertweetTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.BertweetTokenizer
|
|
:members:
|