mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Add test * Apply suggestions Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
517 lines
20 KiB
Python
517 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
from transformers import GitConfig, GitProcessor, GitVisionConfig, is_torch_available, is_vision_available
|
|
from transformers.models.auto import get_values
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, GitForCausalLM, GitModel, GitVisionModel
|
|
from transformers.models.git.modeling_git import GIT_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class GitVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=32,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return GitVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = GitVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class GitVisionModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as GIT does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (GitVisionModel,) if is_torch_available() else ()
|
|
fx_compatible = True
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = GitVisionModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=GitVisionConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="GIT does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_training(self):
|
|
pass
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="GitVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = GitVisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
class GitModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
num_channels=3,
|
|
image_size=32,
|
|
patch_size=16,
|
|
batch_size=13,
|
|
text_seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.batch_size = batch_size
|
|
self.text_seq_length = text_seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
|
|
# make sure the BOS, EOS and PAD tokens are within the vocab
|
|
self.bos_token_id = vocab_size - 1
|
|
self.eos_token_id = vocab_size - 1
|
|
self.pad_token_id = vocab_size - 1
|
|
|
|
# for GIT, the sequence length is the sum of the text and patch tokens, + 1 due to the CLS token
|
|
self.seq_length = self.text_seq_length + int((self.image_size / self.patch_size) ** 2) + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.text_seq_length])
|
|
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, pixel_values
|
|
|
|
def get_config(self):
|
|
"""
|
|
Returns a tiny configuration by default.
|
|
"""
|
|
return GitConfig(
|
|
vision_config={
|
|
"num_channels": self.num_channels,
|
|
"image_size": self.image_size,
|
|
"patch_size": self.patch_size,
|
|
},
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, pixel_values):
|
|
model = GitModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# inference with pixel values
|
|
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
# inference without pixel values
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_for_causal_lm(self, config, input_ids, input_mask, pixel_values):
|
|
model = GitForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# inference with pixel values
|
|
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
# inference without pixel values
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.vocab_size))
|
|
|
|
# training
|
|
result = model(input_ids, attention_mask=input_mask, pixel_values=pixel_values, labels=input_ids)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertTrue(result.loss.item() > 0)
|
|
|
|
def _test_beam_search_generate(self, config, input_ids, input_mask, pixel_values):
|
|
model = GitForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# generate
|
|
generated_ids = model.generate(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
pixel_values=pixel_values,
|
|
do_sample=False,
|
|
max_length=20,
|
|
num_beams=2,
|
|
num_return_sequences=2,
|
|
)
|
|
|
|
self.parent.assertEqual(generated_ids.shape, (self.batch_size * 2, 20))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
pixel_values,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"pixel_values": pixel_values,
|
|
}
|
|
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class GitModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
|
|
all_model_classes = (GitModel, GitForCausalLM) if is_torch_available() else ()
|
|
all_generative_model_classes = (GitForCausalLM,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_torchscript = False
|
|
|
|
# special case for GitForCausalLM model
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
|
|
if return_labels:
|
|
if model_class in get_values(MODEL_FOR_CAUSAL_LM_MAPPING):
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.text_seq_length),
|
|
dtype=torch.long,
|
|
device=torch_device,
|
|
)
|
|
return inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = GitModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=GitConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_causal_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
|
|
|
|
def test_beam_search_generate(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester._test_beam_search_generate(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in GIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = GitModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@unittest.skip(reason="GIT has pixel values as additional input")
|
|
def test_beam_search_generate_dict_outputs_use_cache(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="GIT has pixel values as additional input")
|
|
def test_contrastive_generate(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="GIT has pixel values as additional input")
|
|
def test_contrastive_generate_dict_outputs_use_cache(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="GIT has pixel values as additional input")
|
|
def test_greedy_generate_dict_outputs_use_cache(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@slow
|
|
class GitModelIntegrationTest(unittest.TestCase):
|
|
def test_forward_pass(self):
|
|
processor = GitProcessor.from_pretrained("microsoft/git-base")
|
|
model = GitForCausalLM.from_pretrained("microsoft/git-base")
|
|
|
|
model.to(torch_device)
|
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
inputs = processor(images=image, text="hello world", return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
expected_shape = torch.Size((1, 201, 30522))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
expected_slice = torch.tensor(
|
|
[[-0.9514, -0.9512, -0.9507], [-0.5454, -0.5453, -0.5453], [-0.8862, -0.8857, -0.8848]],
|
|
device=torch_device,
|
|
)
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
|
|
|
|
def test_inference_image_captioning(self):
|
|
processor = GitProcessor.from_pretrained("microsoft/git-base")
|
|
model = GitForCausalLM.from_pretrained("microsoft/git-base")
|
|
model.to(torch_device)
|
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
pixel_values = inputs.pixel_values.to(torch_device)
|
|
|
|
outputs = model.generate(
|
|
pixel_values=pixel_values, max_length=20, output_scores=True, return_dict_in_generate=True
|
|
)
|
|
generated_caption = processor.batch_decode(outputs.sequences, skip_special_tokens=True)[0]
|
|
|
|
expected_shape = torch.Size((1, 9))
|
|
self.assertEqual(outputs.sequences.shape, expected_shape)
|
|
self.assertEquals(generated_caption, "two cats laying on a pink blanket")
|
|
self.assertTrue(outputs.scores[-1].shape, expected_shape)
|
|
expected_slice = torch.tensor([[-0.8805, -0.8803, -0.8799]], device=torch_device)
|
|
self.assertTrue(torch.allclose(outputs.scores[-1][0, :3], expected_slice, atol=1e-4))
|
|
|
|
def test_visual_question_answering(self):
|
|
processor = GitProcessor.from_pretrained("microsoft/git-base-textvqa")
|
|
model = GitForCausalLM.from_pretrained("microsoft/git-base-textvqa")
|
|
model.to(torch_device)
|
|
|
|
# prepare image
|
|
file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
|
|
image = Image.open(file_path).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
pixel_values = inputs.pixel_values.to(torch_device)
|
|
|
|
# prepare question
|
|
question = "what does the front of the bus say at the top?"
|
|
input_ids = processor(text=question, add_special_tokens=False).input_ids
|
|
input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
|
input_ids = torch.tensor(input_ids).unsqueeze(0).to(torch_device)
|
|
|
|
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=20)
|
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
expected_shape = torch.Size((1, 15))
|
|
self.assertEqual(generated_ids.shape, expected_shape)
|
|
self.assertEquals(generated_caption, "what does the front of the bus say at the top? special")
|
|
|
|
def test_batched_generation(self):
|
|
processor = GitProcessor.from_pretrained("microsoft/git-base-coco")
|
|
model = GitForCausalLM.from_pretrained("microsoft/git-base-coco")
|
|
model.to(torch_device)
|
|
|
|
# create batch of size 2
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
inputs = processor(images=[image, image], return_tensors="pt")
|
|
pixel_values = inputs.pixel_values.to(torch_device)
|
|
|
|
# we have to prepare `input_ids` with the same batch size as `pixel_values`
|
|
start_token_id = model.config.bos_token_id
|
|
generated_ids = model.generate(
|
|
pixel_values=pixel_values, input_ids=torch.tensor([[start_token_id], [start_token_id]]), max_length=50
|
|
)
|
|
generated_captions = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
self.assertEquals(generated_captions, ["two cats sleeping on a pink blanket next to remotes."] * 2)
|