mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* first try * remove old template * finish bart * finish mbart * delete unnecessary line * init pegasus * save intermediate * correct pegasus * finish pegasus * remove cookie cutter leftover * add marian * finish blenderbot * replace in file * correctly split blenderbot * delete "old" folder * correct "add statement" * adapt config for tf comp * correct configs for tf * remove ipdb * fix more stuff * fix mbart * push pegasus fix * fix mbart * more fixes * fix research projects code * finish docs for bart, mbart, and marian * delete unnecessary file * correct attn typo * correct configs * remove pegasus for seq class * correct peg docs * correct peg docs * finish configs * further improve docs * add copied from statements to mbart * fix copied from in mbart * add copy statements to marian * add copied from to marian * add pegasus copied from * finish pegasus * finish copied from * Apply suggestions from code review * make style * backward comp blenderbot * apply lysandres and sylvains suggestions * apply suggestions * push last fixes * fix docs * fix tok tests * fix imports code style * fix doc
547 lines
20 KiB
Python
547 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch Marian model. """
|
|
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.file_utils import cached_property
|
|
from transformers.hf_api import HfApi
|
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_generation_utils import GenerationTesterMixin
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelWithLMHead,
|
|
AutoTokenizer,
|
|
MarianConfig,
|
|
MarianModel,
|
|
MarianMTModel,
|
|
TranslationPipeline,
|
|
)
|
|
from transformers.models.marian.convert_marian_to_pytorch import (
|
|
ORG_NAME,
|
|
convert_hf_name_to_opus_name,
|
|
convert_opus_name_to_hf_name,
|
|
)
|
|
from transformers.models.marian.modeling_marian import MarianDecoder, MarianEncoder, shift_tokens_right
|
|
|
|
|
|
def prepare_marian_inputs_dict(
|
|
config,
|
|
input_ids,
|
|
decoder_input_ids,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
):
|
|
if attention_mask is None:
|
|
attention_mask = input_ids.ne(config.pad_token_id)
|
|
if decoder_attention_mask is None:
|
|
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
|
|
return {
|
|
"input_ids": input_ids,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"decoder_attention_mask": attention_mask,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
class MarianModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=20,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
decoder_start_token_id=3,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.decoder_start_token_id = decoder_start_token_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
|
|
3,
|
|
)
|
|
input_ids[:, -1] = self.eos_token_id # Eos Token
|
|
|
|
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
config = MarianConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_start_token_id=self.decoder_start_token_id,
|
|
)
|
|
inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
|
|
model = MarianModel(config=config).get_decoder().to(torch_device).eval()
|
|
input_ids = inputs_dict["input_ids"]
|
|
attention_mask = inputs_dict["attention_mask"]
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
|
|
|
|
output, past_key_values = outputs.to_tuple()
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
|
|
"last_hidden_state"
|
|
]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
|
|
|
|
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
|
|
model = MarianModel(config=config).to(torch_device).eval()
|
|
outputs = model(**inputs_dict)
|
|
|
|
encoder_last_hidden_state = outputs.encoder_last_hidden_state
|
|
last_hidden_state = outputs.last_hidden_state
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
encoder = model.get_encoder()
|
|
encoder.save_pretrained(tmpdirname)
|
|
encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
|
|
0
|
|
]
|
|
|
|
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
decoder = model.get_decoder()
|
|
decoder.save_pretrained(tmpdirname)
|
|
decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
last_hidden_state_2 = decoder(
|
|
input_ids=inputs_dict["decoder_input_ids"],
|
|
attention_mask=inputs_dict["decoder_attention_mask"],
|
|
encoder_hidden_states=encoder_last_hidden_state,
|
|
encoder_attention_mask=inputs_dict["attention_mask"],
|
|
)[0]
|
|
|
|
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
|
|
@require_torch
|
|
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
|
|
all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
|
|
is_encoder_decoder = True
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_missing_keys = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = MarianModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=MarianConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_save_load_strict(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
|
|
self.assertEqual(info["missing_keys"], [])
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_encoder_decoder_model_standalone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
|
|
|
|
def test_generate_fp16(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
model = MarianMTModel(config).eval().to(torch_device)
|
|
if torch_device == "cuda":
|
|
model.half()
|
|
model.generate(input_ids, attention_mask=attention_mask)
|
|
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
|
|
|
|
|
|
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
|
|
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
|
|
if a is None and b is None:
|
|
return True
|
|
try:
|
|
if torch.allclose(a, b, atol=atol):
|
|
return True
|
|
raise
|
|
except Exception:
|
|
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
|
|
if a.numel() > 100:
|
|
msg = f"tensor values are {pct_different:.1%} percent different."
|
|
else:
|
|
msg = f"{a} != {b}"
|
|
if prefix:
|
|
msg = prefix + ": " + msg
|
|
raise AssertionError(msg)
|
|
|
|
|
|
def _long_tensor(tok_lst):
|
|
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
|
|
|
|
|
|
class ModelManagementTests(unittest.TestCase):
|
|
@slow
|
|
@require_torch
|
|
def test_model_names(self):
|
|
model_list = HfApi().model_list()
|
|
model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
|
|
bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
|
|
self.assertListEqual([], bad_model_ids)
|
|
self.assertGreater(len(model_ids), 500)
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class MarianIntegrationTest(unittest.TestCase):
|
|
src = "en"
|
|
tgt = "de"
|
|
src_text = [
|
|
"I am a small frog.",
|
|
"Now I can forget the 100 words of german that I know.",
|
|
"Tom asked his teacher for advice.",
|
|
"That's how I would do it.",
|
|
"Tom really admired Mary's courage.",
|
|
"Turn around and close your eyes.",
|
|
]
|
|
expected_text = [
|
|
"Ich bin ein kleiner Frosch.",
|
|
"Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
|
|
"Tom bat seinen Lehrer um Rat.",
|
|
"So würde ich das machen.",
|
|
"Tom bewunderte Marias Mut wirklich.",
|
|
"Drehen Sie sich um und schließen Sie die Augen.",
|
|
]
|
|
# ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen
|
|
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
|
|
return cls
|
|
|
|
@cached_property
|
|
def tokenizer(self):
|
|
return AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
@property
|
|
def eos_token_id(self) -> int:
|
|
return self.tokenizer.eos_token_id
|
|
|
|
@cached_property
|
|
def model(self):
|
|
model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
|
|
c = model.config
|
|
self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
|
|
self.assertEqual(c.max_length, 512)
|
|
self.assertEqual(c.decoder_start_token_id, c.pad_token_id)
|
|
|
|
if torch_device == "cuda":
|
|
return model.half()
|
|
else:
|
|
return model
|
|
|
|
def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
|
|
generated_words = self.translate_src_text(**tokenizer_kwargs)
|
|
self.assertListEqual(self.expected_text, generated_words)
|
|
|
|
def translate_src_text(self, **tokenizer_kwargs):
|
|
model_inputs = self.tokenizer.prepare_seq2seq_batch(
|
|
src_texts=self.src_text, return_tensors="pt", **tokenizer_kwargs
|
|
).to(torch_device)
|
|
self.assertEqual(self.model.device, model_inputs.input_ids.device)
|
|
generated_ids = self.model.generate(
|
|
model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
|
|
)
|
|
generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
return generated_words
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_EN_DE_More(MarianIntegrationTest):
|
|
@slow
|
|
def test_forward(self):
|
|
src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
|
|
expected_ids = [38, 121, 14, 697, 38848, 0]
|
|
|
|
model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt, return_tensors="pt").to(
|
|
torch_device
|
|
)
|
|
|
|
self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
|
|
|
|
desired_keys = {
|
|
"input_ids",
|
|
"attention_mask",
|
|
"labels",
|
|
}
|
|
self.assertSetEqual(desired_keys, set(model_inputs.keys()))
|
|
model_inputs["decoder_input_ids"] = shift_tokens_right(
|
|
model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
|
|
)
|
|
model_inputs["return_dict"] = True
|
|
model_inputs["use_cache"] = False
|
|
with torch.no_grad():
|
|
outputs = self.model(**model_inputs)
|
|
max_indices = outputs.logits.argmax(-1)
|
|
self.tokenizer.batch_decode(max_indices)
|
|
|
|
def test_unk_support(self):
|
|
t = self.tokenizer
|
|
ids = t.prepare_seq2seq_batch(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
|
|
expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
|
|
self.assertEqual(expected, ids)
|
|
|
|
def test_pad_not_split(self):
|
|
input_ids_w_pad = (
|
|
self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"], return_tensors="pt")
|
|
.input_ids[0]
|
|
.tolist()
|
|
)
|
|
expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad
|
|
self.assertListEqual(expected_w_pad, input_ids_w_pad)
|
|
|
|
@slow
|
|
def test_batch_generation_en_de(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
def test_auto_config(self):
|
|
config = AutoConfig.from_pretrained(self.model_name)
|
|
self.assertIsInstance(config, MarianConfig)
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_EN_FR(MarianIntegrationTest):
|
|
src = "en"
|
|
tgt = "fr"
|
|
src_text = [
|
|
"I am a small frog.",
|
|
"Now I can forget the 100 words of german that I know.",
|
|
]
|
|
expected_text = [
|
|
"Je suis une petite grenouille.",
|
|
"Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
|
|
]
|
|
|
|
@slow
|
|
def test_batch_generation_en_fr(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_FR_EN(MarianIntegrationTest):
|
|
src = "fr"
|
|
tgt = "en"
|
|
src_text = [
|
|
"Donnez moi le micro.",
|
|
"Tom et Mary étaient assis à une table.", # Accents
|
|
]
|
|
expected_text = [
|
|
"Give me the microphone.",
|
|
"Tom and Mary were sitting at a table.",
|
|
]
|
|
|
|
@slow
|
|
def test_batch_generation_fr_en(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_RU_FR(MarianIntegrationTest):
|
|
src = "ru"
|
|
tgt = "fr"
|
|
src_text = ["Он показал мне рукопись своей новой пьесы."]
|
|
expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
|
|
|
|
@slow
|
|
def test_batch_generation_ru_fr(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_MT_EN(MarianIntegrationTest):
|
|
"""Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""
|
|
|
|
src = "mt"
|
|
tgt = "en"
|
|
src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
|
|
expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
|
|
|
|
@slow
|
|
def test_batch_generation_mt_en(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_en_zh(MarianIntegrationTest):
|
|
src = "en"
|
|
tgt = "zh"
|
|
src_text = ["My name is Wolfgang and I live in Berlin"]
|
|
expected_text = ["我叫沃尔夫冈 我住在柏林"]
|
|
|
|
@slow
|
|
def test_batch_generation_eng_zho(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class TestMarian_en_ROMANCE(MarianIntegrationTest):
|
|
"""Multilingual on target side."""
|
|
|
|
src = "en"
|
|
tgt = "ROMANCE"
|
|
src_text = [
|
|
">>fr<< Don't spend so much time watching TV.",
|
|
">>pt<< Your message has been sent.",
|
|
">>es<< He's two years older than me.",
|
|
]
|
|
expected_text = [
|
|
"Ne passez pas autant de temps à regarder la télé.",
|
|
"A sua mensagem foi enviada.",
|
|
"Es dos años más viejo que yo.",
|
|
]
|
|
|
|
@slow
|
|
def test_batch_generation_en_ROMANCE_multi(self):
|
|
self._assert_generated_batch_equal_expected()
|
|
|
|
def test_tokenizer_handles_empty(self):
|
|
normalized = self.tokenizer.normalize("")
|
|
self.assertIsInstance(normalized, str)
|
|
with self.assertRaises(ValueError):
|
|
self.tokenizer.prepare_seq2seq_batch([""], return_tensors="pt")
|
|
|
|
@slow
|
|
def test_pipeline(self):
|
|
device = 0 if torch_device == "cuda" else -1
|
|
pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
|
|
output = pipeline(self.src_text)
|
|
self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
|
|
|
|
|
|
@require_torch
|
|
class TestConversionUtils(unittest.TestCase):
|
|
def test_renaming_multilingual(self):
|
|
old_names = [
|
|
"opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
|
|
"opus-mt-cmn+cn-fi", # no group
|
|
"opus-mt-en-de", # standard name
|
|
"opus-mt-en-de", # standard name
|
|
]
|
|
expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
|
|
self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])
|
|
|
|
def test_undoing_renaming(self):
|
|
hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
|
|
converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
|
|
expected_opus_names = [
|
|
"cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
|
|
"cmn+cn-fi",
|
|
"en-de", # standard name
|
|
"en-de",
|
|
]
|
|
self.assertListEqual(expected_opus_names, converted_opus_names)
|