transformers/tests/models/llava/test_processor_llava.py
Raushan Turganbay eebd2c972c
Chat template: update for processor (#35953)
* update

* we need batched nested input to always process correctly

* update a bit

* fix copies
2025-02-10 09:52:19 +01:00

150 lines
6.7 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
from transformers import AutoProcessor, AutoTokenizer, LlamaTokenizerFast, LlavaProcessor
from transformers.testing_utils import require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import CLIPImageProcessor
if is_torch_available:
pass
@require_vision
class LlavaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = LlavaProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = CLIPImageProcessor(do_center_crop=False)
tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b")
processor_kwargs = self.prepare_processor_dict()
processor = LlavaProcessor(image_processor, tokenizer, **processor_kwargs)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_processor_dict(self):
return {
"chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}",
"patch_size": 3,
"vision_feature_select_strategy": "default"
} # fmt: skip
@unittest.skip(
"Skip because the model has no processor kwargs except for chat template and"
"chat template is saved as a separate file. Stop skipping this test when the processor"
"has new kwargs saved in config file."
)
def test_processor_to_json_string(self):
pass
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def test_can_load_various_tokenizers(self):
for checkpoint in ["Intel/llava-gemma-2b", "llava-hf/llava-1.5-7b-hf"]:
processor = LlavaProcessor.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
self.assertEqual(processor.tokenizer.__class__, tokenizer.__class__)
def test_chat_template(self):
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)
def test_chat_template_dict(self):
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt_tokenized = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True)
expected_output = [[1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901]] # fmt: skip
self.assertListEqual(expected_output, formatted_prompt_tokenized)
out_dict = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True)
self.assertListEqual(list(out_dict.keys()), ["input_ids", "attention_mask"])
# add image URL for return dict
messages[0]["content"][0] = {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
out_dict_with_image = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True
)
self.assertListEqual(list(out_dict_with_image.keys()), ["input_ids", "attention_mask", "pixel_values"])
def test_chat_template_with_continue_final_message(self):
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
expected_prompt = "USER: <image>\nDescribe this image. ASSISTANT: There is a dog and"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a dog and"},
],
},
]
prompt = processor.apply_chat_template(messages, continue_final_message=True)
self.assertEqual(expected_prompt, prompt)