transformers/tests/models/vitpose_backbone/test_modeling_vitpose_backbone.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

218 lines
7.5 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VitPose backbone model."""
import inspect
import unittest
from transformers import VitPoseBackboneConfig
from transformers.testing_utils import require_torch, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import VitPoseBackbone
if is_vision_available():
pass
class VitPoseBackboneModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=[16 * 8, 12 * 8],
patch_size=[8, 8],
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
# in VitPoseBackbone, the seq length equals the number of patches
num_patches = (image_size[0] // patch_size[0]) * (image_size[1] // patch_size[1])
self.seq_length = num_patches
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return VitPoseBackboneConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
num_labels=self.num_labels,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VitPoseBackboneModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VitPoseBackbone does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VitPoseBackbone,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torch_exportable = True
def setUp(self):
self.model_tester = VitPoseBackboneModelTester(self)
self.config_tester = ConfigTester(
self, config_class=VitPoseBackboneConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
# TODO: @Pavel
@unittest.skip(reason="currently failing")
def test_initialization(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="VitPoseBackbone does not output a loss")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support training yet")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="VitPoseBackbone does not support training yet")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_torch_export(self):
# Dense architecture
super().test_torch_export()
# MOE architecture
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_experts = 2
config.part_features = config.hidden_size // config.num_experts
inputs_dict["dataset_index"] = torch.tensor([0] * self.model_tester.batch_size, device=torch_device)
super().test_torch_export(config=config, inputs_dict=inputs_dict)
@require_torch
class VitPoseBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (VitPoseBackbone,) if is_torch_available() else ()
config_class = VitPoseBackboneConfig
has_attentions = False
def setUp(self):
self.model_tester = VitPoseBackboneModelTester(self)