transformers/tests/models/vitmatte/test_image_processing_vitmatte.py
Yoni Gozlan 0ba95564b7
Add args support for fast image processors (#37018)
* add args support to fast image processors

* add comment for clarity

* fix-copies

* Handle child class args passed as both args or kwargs in call and preprocess functions

* revert support args passed as kwargs in overwritten preprocess

* fix image processor errors
2025-05-16 12:01:46 -04:00

359 lines
17 KiB
Python

# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import warnings
import numpy as np
import requests
from packaging import version
from transformers.testing_utils import is_flaky, require_torch, require_torch_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VitMatteImageProcessor
if is_torchvision_available():
from transformers import VitMatteImageProcessorFast
class VitMatteImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_rescale=True,
rescale_factor=0.5,
do_pad=True,
size_divisibility=10,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.size_divisibility = size_divisibility
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
"size_divisibility": self.size_divisibility,
}
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class VitMatteImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = VitMatteImageProcessor if is_vision_available() else None
fast_image_processing_class = VitMatteImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = VitMatteImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size_divisibility"))
def test_call_numpy(self):
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[:2])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_pytorch(self):
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[1:])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
# create batched tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
image_input = torch.stack(image_inputs, dim=0)
self.assertIsInstance(image_input, torch.Tensor)
self.assertTrue(image_input.shape[1] == 3)
trimap_shape = [image_input.shape[0]] + [1] + list(image_input.shape)[2:]
trimap_input = torch.randint(0, 3, trimap_shape, dtype=torch.uint8)
self.assertIsInstance(trimap_input, torch.Tensor)
self.assertTrue(trimap_input.shape[1] == 1)
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_pil(self):
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.size[::-1])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_numpy_4_channels(self):
# Test that can process images which have an arbitrary number of channels
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[:2])
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
encoded_images = image_processor(
images=image,
trimaps=trimap,
input_data_format="channels_last",
image_mean=0,
image_std=1,
return_tensors="pt",
).pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 5)
def test_padding_slow(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
image = np.random.randn(3, 249, 491)
images = image_processing.pad_image(image)
assert images.shape == (3, 256, 512)
image = np.random.randn(3, 249, 512)
images = image_processing.pad_image(image)
assert images.shape == (3, 256, 512)
def test_padding_fast(self):
# extra test because name is different for fast image processor
image_processing = self.fast_image_processing_class(**self.image_processor_dict)
image = torch.rand(3, 249, 491)
images = image_processing._pad_image(image)
assert images.shape == (3, 256, 512)
image = torch.rand(3, 249, 512)
images = image_processing._pad_image(image)
assert images.shape == (3, 256, 512)
def test_image_processor_preprocess_arguments(self):
# vitmatte require additional trimap input for image_processor
# that is why we override original common test
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
image = self.image_processor_tester.prepare_image_inputs()[0]
trimap = np.random.randint(0, 3, size=image.size[::-1])
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
image_processor(image, trimaps=trimap, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
@is_flaky()
def test_fast_is_faster_than_slow(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping speed test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
def measure_time(image_processor, images, trimaps):
# Warmup
for _ in range(5):
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
all_times = []
for _ in range(10):
start = time.time()
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
all_times.append(time.time() - start)
# Take the average of the fastest 3 runs
avg_time = sum(sorted(all_times[:3])) / 3.0
return avg_time
dummy_images = torch.randint(0, 255, (4, 3, 400, 800), dtype=torch.uint8)
dummy_trimaps = torch.randint(0, 3, (4, 400, 800), dtype=torch.uint8)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
fast_time = measure_time(image_processor_fast, dummy_images, dummy_trimaps)
slow_time = measure_time(image_processor_slow, dummy_images, dummy_trimaps)
self.assertLessEqual(fast_time, slow_time)
def test_slow_fast_equivalence(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
dummy_image = Image.open(
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
)
dummy_trimap = np.random.randint(0, 3, size=dummy_image.size[::-1])
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
def test_slow_fast_equivalence_batched(self):
# this only checks on equal resolution, since the slow processor doesn't work otherwise
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
dummy_trimaps = [np.random.randint(0, 3, size=image.shape[1:]) for image in dummy_images]
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
@slow
@require_torch_gpu
@require_vision
def test_can_compile_fast_image_processor(self):
# override as trimaps are needed for the image processor
if self.fast_image_processing_class is None:
self.skipTest("Skipping compilation test as fast image processor is not defined")
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
torch.compiler.reset()
input_image = torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8)
dummy_trimap = np.random.randint(0, 3, size=input_image.shape[1:])
image_processor = self.fast_image_processing_class(**self.image_processor_dict)
output_eager = image_processor(input_image, dummy_trimap, device=torch_device, return_tensors="pt")
image_processor = torch.compile(image_processor, mode="reduce-overhead")
output_compiled = image_processor(input_image, dummy_trimap, device=torch_device, return_tensors="pt")
torch.testing.assert_close(output_eager.pixel_values, output_compiled.pixel_values, rtol=1e-4, atol=1e-4)