mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* add test and fast image processor * make style * Update src/transformers/models/perceiver/image_processing_perceiver_fast.py Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com> * make style --------- Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
228 lines
9.9 KiB
Python
228 lines
9.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.image_utils import PILImageResampling
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import PerceiverImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import PerceiverImageProcessorFast
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class PerceiverImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
num_images=1,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=40,
|
|
do_center_crop=True,
|
|
crop_size=None,
|
|
do_resize=True,
|
|
size=None,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
resample=PILImageResampling.BICUBIC,
|
|
):
|
|
self.crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
|
|
self.size = size if size is not None else {"height": 224, "width": 224}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.num_images = num_images
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_center_crop = do_center_crop
|
|
self.do_resize = do_resize
|
|
self.resample = resample
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_center_crop": self.do_center_crop,
|
|
"crop_size": self.crop_size,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"resample": self.resample,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class PerceiverImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = PerceiverImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = PerceiverImageProcessorFast if is_torchvision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = PerceiverImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
|
self.assertTrue(hasattr(image_processing, "crop_size"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "resample"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
|
|
def test_call_numpy(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for sample_images in image_inputs:
|
|
for image in sample_images:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Idefics3 always processes images as RGB, so it always returns images with 3 channels
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processor_dict = self.image_processor_dict
|
|
image_processing = image_processing_class(**image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
for sample_images in image_inputs:
|
|
for image in sample_images:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_pil(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for images in image_inputs:
|
|
for image in images:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape),
|
|
(self.image_processor_tester.batch_size, *expected_output_image_shape),
|
|
)
|