mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
509 lines
20 KiB
Python
509 lines
20 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
from packaging import version
|
|
|
|
from transformers import AutoTokenizer, ModernBertConfig, is_torch_available
|
|
from transformers.models.auto import get_values
|
|
from transformers.testing_utils import (
|
|
CaptureLogger,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
MODEL_FOR_PRETRAINING_MAPPING,
|
|
ModernBertForMaskedLM,
|
|
ModernBertForQuestionAnswering,
|
|
ModernBertForSequenceClassification,
|
|
ModernBertForTokenClassification,
|
|
ModernBertModel,
|
|
logging,
|
|
)
|
|
|
|
|
|
class ModernBertModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
pad_token_id=0,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_activation="gelu",
|
|
mlp_dropout=0.0,
|
|
attention_dropout=0.0,
|
|
embedding_dropout=0.0,
|
|
classifier_dropout=0.0,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.pad_token_id = pad_token_id
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_activation = hidden_activation
|
|
self.mlp_dropout = mlp_dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.embedding_dropout = embedding_dropout
|
|
self.classifier_dropout = classifier_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
"""
|
|
Returns a tiny configuration by default.
|
|
"""
|
|
config = ModernBertConfig(
|
|
vocab_size=self.vocab_size,
|
|
pad_token_id=self.pad_token_id,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_activation=self.hidden_activation,
|
|
mlp_dropout=self.mlp_dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
embedding_dropout=self.embedding_dropout,
|
|
classifier_dropout=self.classifier_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
if test := os.environ.get("PYTEST_CURRENT_TEST", False):
|
|
test_name = test.split(":")[-1].split(" ")[0]
|
|
|
|
# If we're testing `test_retain_grad_hidden_states_attentions`, we normally get an error
|
|
# that compilation doesn't work. Users can then set compile=False when loading the model,
|
|
# much like here. We're testing whether it works once they've done that.
|
|
|
|
# If we're testing `test_inputs_embeds_matches_input_ids`, then we'd like to test with `reference_compile`
|
|
# set to False, otherwise the input_ids with compiled input embeddings will not match the inputs_embeds
|
|
# with atol=1e-8 and rtol=1e-5
|
|
if test_name in ("test_retain_grad_hidden_states_attentions", "test_inputs_embeds_matches_input_ids"):
|
|
config.reference_compile = False
|
|
# Some tests require attentions to be outputted, in that case we'll set the attention implementation to eager
|
|
# as the others don't support outputted attentions
|
|
if test_name in (
|
|
"test_attention_outputs",
|
|
"test_hidden_states_output",
|
|
"test_retain_grad_hidden_states_attentions",
|
|
):
|
|
config._attn_implementation = "eager"
|
|
return config
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
|
model = ModernBertModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = ModernBertForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ModernBertForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ModernBertForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ModernBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
test_torchscript = False
|
|
|
|
all_model_classes = (
|
|
(
|
|
ModernBertModel,
|
|
ModernBertForMaskedLM,
|
|
ModernBertForSequenceClassification,
|
|
ModernBertForTokenClassification,
|
|
ModernBertForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": ModernBertModel,
|
|
"fill-mask": ModernBertForMaskedLM,
|
|
"text-classification": ModernBertForSequenceClassification,
|
|
"token-classification": ModernBertForTokenClassification,
|
|
"zero-shot": ModernBertForSequenceClassification,
|
|
"question-answering": ModernBertForQuestionAnswering,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
model_split_percents = [0.5, 0.8, 0.9]
|
|
|
|
# special case for ForPreTraining model
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
|
|
if inputs_dict.get("output_attentions", False):
|
|
inputs_dict["output_attentions"] = True
|
|
|
|
if return_labels:
|
|
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
inputs_dict["next_sentence_label"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
return inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = ModernBertModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ModernBertConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
# The classifier.weight from ModernBertForSequenceClassification and ModernBertForTokenClassification
|
|
# are initialized without `initializer_range`, so they're not set to ~0 via the _config_zero_init
|
|
if param.requires_grad and not (
|
|
name == "classifier.weight"
|
|
and model_class
|
|
in [
|
|
ModernBertForSequenceClassification,
|
|
ModernBertForTokenClassification,
|
|
ModernBertForQuestionAnswering,
|
|
]
|
|
):
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_warning_if_padding_and_no_attention_mask(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.model_tester.prepare_config_and_inputs()
|
|
|
|
# Set pad tokens in the input_ids
|
|
input_ids[0, 0] = config.pad_token_id
|
|
|
|
# Check for warnings if the attention_mask is missing.
|
|
logger = logging.get_logger("transformers.modeling_utils")
|
|
# clear cache so we can test the warning is emitted (from `warning_once`).
|
|
logger.warning_once.cache_clear()
|
|
|
|
with CaptureLogger(logger) as cl:
|
|
model = ModernBertModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
model(input_ids, attention_mask=None)
|
|
self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out)
|
|
|
|
@unittest.skip("ModernBert doesn't use separate classes for SDPA, but a function instead.")
|
|
def test_sdpa_can_dispatch_non_composite_models(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google-bert/bert-base-uncased"
|
|
model = ModernBertModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="ModernBert flash attention does not support right padding")
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_conversion(self):
|
|
self.skipTest(reason="ModernBert doesn't use the ModernBertFlashAttention2 class method.")
|
|
|
|
def test_saved_config_excludes_reference_compile(self):
|
|
config = ModernBertConfig(reference_compile=True)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
config.save_pretrained(tmpdirname)
|
|
with open(os.path.join(tmpdirname, "config.json")) as f:
|
|
config_dict = json.load(f)
|
|
self.assertNotIn("reference_compile", config_dict)
|
|
|
|
|
|
@require_torch
|
|
class ModernBertModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
model = ModernBertForMaskedLM.from_pretrained(
|
|
"answerdotai/ModernBERT-base", reference_compile=False, attn_implementation="sdpa"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
|
|
|
inputs = tokenizer("Hello World!", return_tensors="pt")
|
|
with torch.no_grad():
|
|
output = model(**inputs)[0]
|
|
expected_shape = torch.Size((1, 5, 50368))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
# compare the actual values for a slice.
|
|
expected_slice = torch.tensor(
|
|
[[[3.8387, -0.2017, 12.2839], [3.6300, 0.6869, 14.7123], [-5.1137, -3.8122, 11.9874]]]
|
|
)
|
|
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
model = ModernBertModel.from_pretrained(
|
|
"answerdotai/ModernBERT-base", reference_compile=False, attn_implementation="sdpa"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
|
|
|
inputs = tokenizer("Hello World!", return_tensors="pt")
|
|
with torch.no_grad():
|
|
output = model(**inputs)[0]
|
|
expected_shape = torch.Size((1, 5, 768))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
# compare the actual values for a slice.
|
|
expected_slice = torch.tensor(
|
|
[[[0.3151, -0.6417, -0.7027], [-0.7834, -1.5810, 0.4576], [1.0614, -0.7268, -0.0871]]]
|
|
)
|
|
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_inference_token_classification(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
model = ModernBertForTokenClassification.from_pretrained(
|
|
"hf-internal-testing/tiny-random-ModernBertForTokenClassification",
|
|
reference_compile=False,
|
|
attn_implementation="sdpa",
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-ModernBertForTokenClassification")
|
|
|
|
inputs = tokenizer("Hello World!", return_tensors="pt")
|
|
with torch.no_grad():
|
|
output = model(**inputs)[0]
|
|
expected_shape = torch.Size((1, 5, 2))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected = torch.tensor(
|
|
[[[2.0159, 4.6569], [-0.9430, 3.1595], [-3.8770, 3.2653], [1.5752, 4.5167], [-1.6939, 1.2524]]]
|
|
)
|
|
torch.testing.assert_close(output, expected, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_inference_sequence_classification(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
model = ModernBertForSequenceClassification.from_pretrained(
|
|
"hf-internal-testing/tiny-random-ModernBertForSequenceClassification",
|
|
reference_compile=False,
|
|
attn_implementation="sdpa",
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/tiny-random-ModernBertForSequenceClassification"
|
|
)
|
|
|
|
inputs = tokenizer("Hello World!", return_tensors="pt")
|
|
with torch.no_grad():
|
|
output = model(**inputs)[0]
|
|
expected_shape = torch.Size((1, 2))
|
|
self.assertEqual(output.shape, expected_shape)
|
|
|
|
expected = torch.tensor([[1.6466, 4.5662]])
|
|
torch.testing.assert_close(output, expected, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_export(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
bert_model = "answerdotai/ModernBERT-base"
|
|
device = "cpu"
|
|
attn_implementation = "sdpa"
|
|
max_length = 512
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
|
inputs = tokenizer(
|
|
"the man worked as a [MASK].",
|
|
return_tensors="pt",
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
)
|
|
|
|
model = ModernBertForMaskedLM.from_pretrained(
|
|
bert_model,
|
|
device_map=device,
|
|
attn_implementation=attn_implementation,
|
|
)
|
|
|
|
logits = model(**inputs).logits
|
|
eg_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices)
|
|
self.assertEqual(eg_predicted_mask.split(), ["lawyer", "mechanic", "teacher", "doctor", "waiter"])
|
|
|
|
exported_program = torch.export.export(
|
|
model,
|
|
args=(inputs["input_ids"],),
|
|
kwargs={"attention_mask": inputs["attention_mask"]},
|
|
strict=True,
|
|
)
|
|
|
|
result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"])
|
|
ep_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices)
|
|
self.assertEqual(eg_predicted_mask, ep_predicted_mask)
|