transformers/tests/models/jetmoe/test_modeling_jetmoe.py
Matt 53fb245eb6
🚨 🚨 Inherited CausalLM Tests (#37590)
* stash commit

* Experiment 1: Try just Gemma

* Experiment 1: Just try Gemma

* make fixup

* Trigger tests

* stash commit

* Try adding Gemma3 as well

* make fixup

* Correct attrib names

* Correct pipeline model mapping

* Add in all_model_classes for Gemma1 again

* Move the pipeline model mapping around again

* make fixup

* Revert Gemma3 changes since it's a VLM

* Let's try Falcon

* Correct attributes

* Correct attributes

* Let's try just overriding get_config() for now

* Do Nemotron too

* And Llama!

* Do llama/persimmon

* Correctly skip tests

* Fix Persimmon

* Include Phimoe

* Fix Gemma2

* Set model_tester_class correctly

* Add GLM

* More models!

* models models models

* make fixup

* Add Qwen3 + Qwen3MoE

* Correct import

* make fixup

* Add the QuestionAnswering classes

* Add the QuestionAnswering classes

* Move pipeline mapping to the right place

* Jetmoe too

* Stop RoPE testing models with no RoPE

* Fix up JetMOE a bit

* Fix up JetMOE a bit

* Can we just force pad_token_id all the time?

* make fixup

* fix starcoder2

* Move pipeline mapping

* Fix RoPE skipping

* Fix RecurrentGemma tests

* Fix Falcon tests

* Add MoE attributes

* Fix values for RoPE testing

* Make sure we set bos_token_id and eos_token_id in an appropriate range

* make fixup

* Fix GLM4

* Add mamba attributes

* Revert bits of JetMOE

* Re-add the JetMOE skips

* Update tests/causal_lm_tester.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add licence

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-23 18:29:31 +01:00

198 lines
7.1 KiB
Python

# Copyright 2024 JetMoe AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch JetMoe model."""
import gc
import unittest
import pytest
from transformers import AutoTokenizer, JetMoeConfig, is_torch_available
from transformers.testing_utils import (
backend_empty_cache,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
if is_torch_available():
import torch
from transformers import (
JetMoeForCausalLM,
JetMoeForSequenceClassification,
JetMoeModel,
)
class JetMoeModelTester(CausalLMModelTester):
config_class = JetMoeConfig
forced_config_args = ["pad_token_id"]
if is_torch_available():
base_model_class = JetMoeModel
causal_lm_class = JetMoeForCausalLM
sequence_class = JetMoeForSequenceClassification
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_key_value_heads=2,
kv_channels=8,
intermediate_size=37,
hidden_act="silu",
num_local_experts=4,
num_experts_per_tok=2,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
super().__init__(parent)
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.kv_channels = kv_channels
self.num_attention_heads = num_key_value_heads * num_experts_per_tok
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_local_experts = num_local_experts
self.num_experts_per_tok = num_experts_per_tok
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
@require_torch
class JetMoeModelTest(CausalLMModelTest, unittest.TestCase):
all_model_classes = (
(JetMoeModel, JetMoeForCausalLM, JetMoeForSequenceClassification) if is_torch_available() else ()
)
test_headmasking = False
test_pruning = False
test_mismatched_shapes = False
test_cpu_offload = False
test_disk_offload_bin = False
test_disk_offload_safetensors = False
model_tester_class = JetMoeModelTester
pipeline_model_mapping = (
{
"feature-extraction": JetMoeModel,
"text-classification": JetMoeForSequenceClassification,
"text-generation": JetMoeForCausalLM,
}
if is_torch_available()
else {}
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
self.skipTest(reason="JetMoe flash attention does not support right padding")
@require_torch
class JetMoeIntegrationTest(unittest.TestCase):
@slow
def test_model_8b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
with torch.no_grad():
out = model(input_ids).logits.float().cpu()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[0.2507, -2.7073, -1.3445, -1.9363, -1.7216, -1.7370, -1.9054, -1.9792]])
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([-3.3689, 5.9006, 5.7450, -1.7012, -4.7072, -4.7071, -4.7071, -4.7071, -4.7072, -4.7072, -4.7072, -4.7071, 3.8321, 9.1746, -4.7071, -4.7072, -4.7071, -4.7072, -4.7071, -4.7072, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071, -4.7071]) # fmt: skip
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_8b_generation(self):
EXPECTED_TEXT_COMPLETION = """My favourite condiment is ....\nI love ketchup. I love"""
prompt = "My favourite condiment is "
tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b", use_fast=False)
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=10, temperature=0)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_8b_batched_generation(self):
EXPECTED_TEXT_COMPLETION = [
"""My favourite condiment is ....\nI love ketchup. I love""",
"""My favourite 2018 Christmas present was a new pair""",
]
prompt = [
"My favourite condiment is ",
"My favourite ",
]
tokenizer = AutoTokenizer.from_pretrained("jetmoe/jetmoe-8b", use_fast=False)
model = JetMoeForCausalLM.from_pretrained("jetmoe/jetmoe-8b")
input_ids = tokenizer(prompt, return_tensors="pt", padding=True).to(model.model.embed_tokens.weight.device)
print(input_ids)
# greedy generation outputs
generated_ids = model.generate(**input_ids, max_new_tokens=10, temperature=0)
text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(text)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()