transformers/tests/models/gemma2/test_modeling_gemma2.py
Yao Matrix 89542fb81c
enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00

471 lines
20 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma2 model."""
import unittest
import pytest
from packaging import version
from parameterized import parameterized
from pytest import mark
from transformers import AutoModelForCausalLM, AutoTokenizer, Gemma2Config, is_torch_available, pipeline
from transformers.generation.configuration_utils import GenerationConfig
from transformers.testing_utils import (
Expectations,
cleanup,
is_flash_attn_2_available,
require_flash_attn,
require_large_cpu_ram,
require_read_token,
require_torch,
require_torch_accelerator,
require_torch_large_accelerator,
require_torch_large_gpu,
slow,
torch_device,
)
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
from ...test_configuration_common import ConfigTester
if is_torch_available():
import torch
from transformers import (
Gemma2ForCausalLM,
Gemma2ForSequenceClassification,
Gemma2ForTokenClassification,
Gemma2Model,
)
class Gemma2ModelTester(CausalLMModelTester):
if is_torch_available():
config_class = Gemma2Config
base_model_class = Gemma2Model
causal_lm_class = Gemma2ForCausalLM
sequence_class = Gemma2ForSequenceClassification
token_class = Gemma2ForTokenClassification
pipeline_model_mapping = (
{
"feature-extraction": Gemma2Model,
"text-classification": Gemma2ForSequenceClassification,
"token-classification": Gemma2ForTokenClassification,
"text-generation": Gemma2ForCausalLM,
"zero-shot": Gemma2ForSequenceClassification,
}
if is_torch_available()
else {}
)
@require_torch
class Gemma2ModelTest(CausalLMModelTest, unittest.TestCase):
all_model_classes = (
(Gemma2Model, Gemma2ForCausalLM, Gemma2ForSequenceClassification, Gemma2ForTokenClassification)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": Gemma2Model,
"text-classification": Gemma2ForSequenceClassification,
"token-classification": Gemma2ForTokenClassification,
"text-generation": Gemma2ForCausalLM,
"zero-shot": Gemma2ForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
model_tester_class = Gemma2ModelTester
def setUp(self):
self.model_tester = Gemma2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Gemma2Config, hidden_size=37)
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@unittest.skip("Gemma2's forcefully disables sdpa due to softcapping")
def test_sdpa_can_dispatch_non_composite_models(self):
pass
@unittest.skip("Gemma2's eager attn/sdpa attn outputs are expected to be different")
def test_eager_matches_sdpa_generate(self):
pass
@parameterized.expand([("random",), ("same",)])
@pytest.mark.generate
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@pytest.mark.generate
@unittest.skip("Gemma2 has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Gemma2 has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip("Gemma2 has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_continue_from_inputs_embeds(self):
pass
@unittest.skip(
reason="HybridCache can't be gathered because it is not iterable. Adding a simple iter and dumping `distributed_iterator`"
" as in Dynamic Cache doesn't work. NOTE: @gante all cache objects would need better compatibility with multi gpu setting"
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip("Gemma2 has HybridCache which auto-compiles. Compile and FA2 don't work together.")
def test_eager_matches_fa2_generate(self):
pass
@unittest.skip("Gemma2 eager/FA2 attention outputs are expected to be different")
def test_flash_attn_2_equivalence(self):
pass
@slow
@require_torch_accelerator
class Gemma2IntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
def setUp(self):
cleanup(torch_device, gc_collect=True)
def tearDown(self):
cleanup(torch_device, gc_collect=True)
@require_torch_large_accelerator
@require_read_token
def test_model_9b_bf16(self):
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
"<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_torch_large_accelerator
@require_read_token
def test_model_9b_fp16(self):
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
"<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, attn_implementation="eager"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_read_token
@require_torch_large_accelerator
def test_model_9b_pipeline_bf16(self):
# See https://github.com/huggingface/transformers/pull/31747 -- pipeline was broken for Gemma2 before this PR
model_id = "google/gemma-2-9b"
# EXPECTED_TEXTS should match the same non-pipeline test, minus the special tokens
EXPECTED_TEXTS = [
"Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flex_attention"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = pipe(self.input_text, max_new_tokens=20, do_sample=False, padding=True)
self.assertEqual(output[0][0]["generated_text"], EXPECTED_TEXTS[0])
self.assertEqual(output[1][0]["generated_text"], EXPECTED_TEXTS[1])
@require_read_token
def test_model_2b_pipeline_bf16_flex_attention(self):
# See https://github.com/huggingface/transformers/pull/31747 -- pipeline was broken for Gemma2 before this PR
model_id = "google/gemma-2-2b"
# EXPECTED_TEXTS should match the same non-pipeline test, minus the special tokens
EXPECTED_BATCH_TEXTS = Expectations(
{
("xpu", 3): [
"Hello I am doing a project on the 1960s and I am trying to find out what the average",
"Hi today I'm going to be talking about the 10 most powerful characters in the Naruto series.",
],
("cuda", 8): [
"Hello I am doing a project on the 1960s and I am trying to find out what the average",
"Hi today I'm going to be talking about the 10 most powerful characters in the Naruto series.",
],
}
)
EXPECTED_BATCH_TEXT = EXPECTED_BATCH_TEXTS.get_expectation()
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flex_attention"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
output = pipe(self.input_text, max_new_tokens=20, do_sample=False, padding=True)
self.assertEqual(output[0][0]["generated_text"], EXPECTED_BATCH_TEXT[0])
self.assertEqual(output[1][0]["generated_text"], EXPECTED_BATCH_TEXT[1])
@require_read_token
@require_flash_attn
@require_torch_large_gpu
@mark.flash_attn_test
@slow
def test_model_9b_flash_attn(self):
# See https://github.com/huggingface/transformers/issues/31953 --- flash attn was generating garbage for gemma2, especially in long context
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
'<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many people died in the United States. I have found a few sites that say 500,000 but I am not sure if that is correct. I have also found a site that says 675,000 but I am not sure if that is correct either. I am trying to find out how many people died in the United States. I have found a few',
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America is a country in North America. It is the third largest country in the world by total area and the third most populous country with over 320 million people. The United States is a federal republic composed of 50 states and a federal district. The 48 contiguous states and the district of Columbia are in central North America between Canada and Mexico. The state of Alaska is in the",
] # fmt: skip
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="flash_attention_2", torch_dtype="float16"
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=100, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@slow
@require_read_token
def test_export_static_cache(self):
if version.parse(torch.__version__) < version.parse("2.5.0"):
self.skipTest(reason="This test requires torch >= 2.5 to run.")
from transformers.integrations.executorch import (
TorchExportableModuleWithStaticCache,
convert_and_export_with_cache,
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b", pad_token="</s>", padding_side="right")
EXPECTED_TEXT_COMPLETIONS = Expectations(
{
("xpu", 3): [
"Hello I am doing a project for my school and I need to know how to make a program that will take a number"
],
("cuda", 7): [
"Hello I am doing a project for my school and I need to know how to make a program that will take a number"
],
("cuda", 8): [
"Hello I am doing a project for my class and I am having trouble with the code. I am trying to make a"
],
}
)
EXPECTED_TEXT_COMPLETION = EXPECTED_TEXT_COMPLETIONS.get_expectation()
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
"input_ids"
].shape[-1]
# Load model
device = "cpu"
dtype = torch.bfloat16
cache_implementation = "static"
attn_implementation = "sdpa"
batch_size = 1
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b",
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_generation_length,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_generation_length,
},
),
)
prompts = ["Hello I am doing"]
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
prompt_token_ids = prompt_tokens["input_ids"]
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
# Static Cache + export
exported_program = convert_and_export_with_cache(model)
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
)
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
@slow
@require_read_token
@require_large_cpu_ram
def test_export_hybrid_cache(self):
from transformers.integrations.executorch import TorchExportableModuleForDecoderOnlyLM
from transformers.pytorch_utils import is_torch_greater_or_equal
if not is_torch_greater_or_equal("2.6.0"):
self.skipTest(reason="This test requires torch >= 2.6 to run.")
model_id = "google/gemma-2-2b"
model = AutoModelForCausalLM.from_pretrained(model_id)
self.assertEqual(model.config.cache_implementation, "hybrid")
# Export + HybridCache
model.eval()
exportable_module = TorchExportableModuleForDecoderOnlyLM(model)
exported_program = exportable_module.export()
# Test generation with the exported model
prompt = "What is the capital of France?"
max_new_tokens_to_generate = 20
# Generate text with the exported model
tokenizer = AutoTokenizer.from_pretrained(model_id)
export_generated_text = TorchExportableModuleForDecoderOnlyLM.generate(
exported_program, tokenizer, prompt, max_new_tokens=max_new_tokens_to_generate
)
input_text = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
eager_outputs = model.generate(
**input_text,
max_new_tokens=max_new_tokens_to_generate,
do_sample=False, # Use greedy decoding to match the exported model
)
eager_generated_text = tokenizer.decode(eager_outputs[0], skip_special_tokens=True)
self.assertEqual(export_generated_text, eager_generated_text)
@require_torch_large_accelerator
@require_read_token
def test_model_9b_bf16_flex_attention(self):
model_id = "google/gemma-2-9b"
EXPECTED_TEXTS = [
"<bos>Hello I am doing a project on the 1918 flu pandemic and I am trying to find out how many",
"<pad><pad><bos>Hi today I'm going to be talking about the history of the United States. The United States of America",
]
model = AutoModelForCausalLM.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flex_attention"
).to(torch_device)
assert model.config._attn_implementation == "flex_attention"
tokenizer = AutoTokenizer.from_pretrained(model_id)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=False)
self.assertEqual(output_text, EXPECTED_TEXTS)
@parameterized.expand([("flash_attention_2",), ("sdpa",), ("flex_attention",), ("eager",)])
@require_read_token
def test_generation_beyond_sliding_window(self, attn_implementation: str):
"""Test that we can correctly generate beyond the sliding window. This is non trivial as
we need to correctly slice the attention mask in all cases (because we use a HybridCache).
Outputs for every attention functions should be coherent and identical.
"""
if attn_implementation == "flash_attention_2" and not is_flash_attn_2_available():
self.skipTest("FlashAttention2 is required for this test.")
if torch_device == "xpu" and attn_implementation == "flash_attention_2":
self.skipTest(reason="Intel XPU doesn't support falsh_attention_2 as of now.")
model_id = "google/gemma-2-2b"
EXPECTED_COMPLETIONS = [
" the people, the food, the culture, the history, the music, the art, the architecture",
", green, yellow, orange, purple, pink, brown, black, white, gray, silver",
]
input_text = [
"This is a nice place. " * 800 + "I really enjoy the scenery,", # This is larger than 4096 tokens
"A list of colors: red, blue", # This will almost all be padding tokens
]
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
inputs = tokenizer(input_text, padding=True, return_tensors="pt").to(torch_device)
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation=attn_implementation, torch_dtype=torch.float16
).to(torch_device)
# Make sure prefill is larger than sliding window
input_size = inputs.input_ids.shape[-1]
self.assertTrue(input_size > model.config.sliding_window)
out = model.generate(**inputs, max_new_tokens=20)[:, input_size:]
output_text = tokenizer.batch_decode(out)
self.assertEqual(output_text, EXPECTED_COMPLETIONS)