transformers/tests/models/clip/test_modeling_clip.py
Raushan Turganbay bf68dd9e6e
[tests] expand flex-attn test for vision models (#38434)
* expand the test for VLMs

* typo

* mark models `supports_flex` + expand test for additional kwargs

* flex attn for refactored vision models

* fix copies

* fix

* unskip

* style

* address comments
2025-06-03 07:40:44 +00:00

950 lines
37 KiB
Python

# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch CLIP model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from parameterized import parameterized
from pytest import mark
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_gpu,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import (
is_torch_available,
is_vision_available,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION,
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
is_flaky,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
CLIPForImageClassification,
CLIPModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
if is_vision_available():
from PIL import Image
from transformers import CLIPProcessor
class CLIPVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return CLIPVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = CLIPVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, pixel_values):
model = CLIPVisionModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
def test_eager_matches_sdpa_inference(self, *args):
return getattr(ModelTesterMixin, self._testMethodName)(self)
class CLIPModelTesterMixin(ModelTesterMixin):
"""
Subclass of ModelTesterMixin with methods specific to testing CLIP models.
The SDPA equivalence test is overridden here because CLIP models may have test/vision/text+vision inputs,
different output logits, and are not supposed to be used or tested with padding_side="left".
"""
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# Load the model with SDPA (it is the default, but we explicit it for clarity)
model_sdpa = model_class.from_pretrained(tmpdirname, attn_implementation="sdpa")
model_sdpa = model_sdpa.eval().to(torch_device)
# Load model with eager attention
model_eager = model_class.from_pretrained(
tmpdirname,
attn_implementation="eager",
)
model_eager = model_eager.eval().to(torch_device)
if hasattr(model_sdpa, "vision_model"):
self.assertTrue(model_sdpa.vision_model.config._attn_implementation == "sdpa")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
if hasattr(model_sdpa, "text_model"):
self.assertTrue(model_sdpa.text_model.config._attn_implementation == "sdpa")
self.assertTrue(model_eager.text_model.config._attn_implementation == "eager")
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
self.assertTrue(model_eager.config._attn_implementation == "eager")
@require_torch
class CLIPVisionModelTest(CLIPModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = CLIPVisionModelTester(self)
self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPVisionModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "visual_projection"))
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
@is_flaky()
def test_eager_matches_sdpa_inference(self, *args):
# adding only flaky decorator here and call the parent test method
return getattr(ModelTesterMixin, self._testMethodName)(self)
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
super().test_sdpa_can_dispatch_composite_models()
class CLIPTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return CLIPTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = CLIPTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, input_ids, input_mask):
model = CLIPTextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class CLIPTextModelTest(CLIPModelTesterMixin, unittest.TestCase):
all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else ()
fx_compatible = True
test_pruning = False
test_head_masking = False
model_split_percents = [0.5, 0.8, 0.9]
def setUp(self):
self.model_tester = CLIPTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="CLIP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPTextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
@slow
@is_flaky()
def test_eager_matches_sdpa_inference(self, *args):
# adding only flaky decorator here and call the parent test method
return getattr(ModelTesterMixin, self._testMethodName)(self)
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
super().test_sdpa_can_dispatch_composite_models()
@require_torch_sdpa
def test_sdpa_can_dispatch_on_flash(self):
self.skipTest(reason="CLIPTextModel has two attention masks: `causal_attention_mask` and `attention_mask`")
class CLIPModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs)
self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return CLIPConfig.from_text_vision_configs(
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = CLIPModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class CLIPModelTest(CLIPModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CLIPModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": CLIPModel, "image-feature-extraction": CLIPVisionModel} if is_torch_available() else {}
)
additional_model_inputs = ["pixel_values"]
fx_compatible = True
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
_is_composite = True
def setUp(self):
self.model_tester = CLIPModelTester(self)
common_properties = ["projection_dim", "logit_scale_init_value"]
self.config_tester = ConfigTester(
self, config_class=CLIPConfig, has_text_modality=False, common_properties=common_properties
)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="CLIPModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
# override as the `logit_scale` parameter initialization is different for CLIP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initialized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save CLIPConfig and check if we can load CLIPVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save CLIPConfig and check if we can load CLIPTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = CLIPTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
@slow
@is_flaky()
def test_eager_matches_sdpa_inference(self, *args):
# adding only flaky decorator here and call the parent test method
return getattr(ModelTesterMixin, self._testMethodName)(self)
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
super().test_sdpa_can_dispatch_composite_models()
@require_torch_sdpa
def test_sdpa_can_dispatch_on_flash(self):
self.skipTest(reason="CLIP text tower has two attention masks: `causal_attention_mask` and `attention_mask`")
@require_torch_sdpa
def test_sdpa_can_compile_dynamic(self):
self.skipTest(reason="CLIP model can't be compiled dynamic, error in clip_loss`")
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence(self):
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
dummy_input_ids = inputs_dict["input_ids"]
outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
outputs_fa = model_fa(
pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
)
self.assertTrue(
torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
f"Image logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
)
self.assertTrue(
torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
f"Text logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
def test_flash_attn_2_inference_equivalence_right_padding(self):
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="eager"
)
model.to(torch_device)
dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
dummy_input_ids = inputs_dict["input_ids"]
dummy_pixel_mask = inputs_dict["attention_mask"]
# right padding
dummy_pixel_mask[:] = 1
dummy_pixel_mask[:, -1:] = 0
outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
outputs_fa = model_fa(
pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
)
logits_per_image_eager = outputs.logits_per_image[:, :-1]
logits_per_text_eager = outputs.logits_per_text[:, :-1]
logits_per_image_sdpa = outputs_fa.logits_per_image[:, :-1]
logits_per_text_sdpa = outputs_fa.logits_per_text[:, :-1]
self.assertTrue(
torch.allclose(logits_per_image_eager, logits_per_image_sdpa, atol=4e-2, rtol=4e-2),
f"Image logits max diff: {torch.max(torch.abs(logits_per_image_eager - logits_per_image_sdpa))}",
)
self.assertTrue(
torch.allclose(logits_per_text_eager, logits_per_text_sdpa, atol=4e-2, rtol=4e-2),
f"Text logits max diff: {torch.max(torch.abs(logits_per_text_eager - logits_per_text_sdpa))}",
)
class CLIPForImageClassificationModelTester(CLIPModelTester):
def __init__(self, parent):
super().__init__(parent)
self.batch_size = self.vision_model_tester.batch_size
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.hidden_size = self.vision_model_tester.hidden_size
self.seq_length = self.vision_model_tester.seq_length
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class CLIPForImageClassificationModelTest(CLIPModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CLIPForImageClassification,) if is_torch_available() else ()
pipeline_model_mapping = {"image-classification": CLIPForImageClassification} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
_is_composite = True
def setUp(self):
self.model_tester = CLIPForImageClassificationModelTester(self)
@unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="CLIP uses the same initialization scheme as the Flax original implementation")
def test_initialization(self):
pass
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
@slow
@is_flaky()
def test_eager_matches_sdpa_inference(self, *args):
# adding only flaky decorator here and call the parent test method
return getattr(ModelTesterMixin, self._testMethodName)(self)
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
super().test_sdpa_can_dispatch_composite_models()
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class CLIPModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(model_name, attn_implementation="sdpa").to(torch_device)
processor = CLIPProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt"
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device)
torch.testing.assert_close(outputs.logits_per_image, expected_logits, rtol=1e-3, atol=1e-3)
@slow
def test_inference_interpolate_pos_encoding(self):
# CLIP models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(torch_device)
processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-base-patch32", size={"height": 180, "width": 180}, crop_size={"height": 180, "width": 180}
)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device)
# interpolate_pos_encodiung false should return value error
with self.assertRaises(ValueError, msg="doesn't match model"):
with torch.no_grad():
model(**inputs, interpolate_pos_encoding=False)
# forward pass
with torch.no_grad():
outputs = model(**inputs, interpolate_pos_encoding=True)
# verify the logits
expected_shape = torch.Size((1, 26, 768))
self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.1538, 0.0322, -0.3235], [0.2893, 0.1135, -0.5708], [0.0461, 0.1540, -0.6018]]
).to(torch_device)
torch.testing.assert_close(
outputs.vision_model_output.last_hidden_state[0, :3, :3], expected_slice, rtol=6e-3, atol=4e-4
)