transformers/tests/models/chameleon/test_modeling_chameleon.py

416 lines
17 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch chameleon model."""
import unittest
import requests
from parameterized import parameterized
from transformers import ChameleonConfig, is_torch_available, is_vision_available, set_seed
from transformers.testing_utils import (
require_bitsandbytes,
require_read_token,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_vision_available():
from PIL import Image
if is_torch_available():
import torch
from transformers import (
ChameleonForConditionalGeneration,
ChameleonModel,
ChameleonProcessor,
)
class ChameleonModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
use_input_mask=True,
use_labels=True,
vocab_size=99,
image_token_id=98,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
vq_num_embeds=12,
vq_embed_dim=12,
vq_channel_multiplier=[1, 2],
vq_img_token_start_id=10, # has to be less than vocab size when added with vq_num_embeds
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.image_token_id = image_token_id
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
self.vq_num_embeds = vq_num_embeds
self.vq_embed_dim = vq_embed_dim
self.vq_channel_multiplier = vq_channel_multiplier
self.vq_img_token_start_id = vq_img_token_start_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
# create dummy vocab map for image2bpe mapping if it needs remapping
# we assume that vocab size is big enough to accoun for image tokens somewhere in the beginning
# same way as in real ckpt, when img tokens are in first half of embeds
# we will need "vq_num_embeds" amount of tokens
vocab_map = {i: chr(i) for i in range(self.vocab_size)}
vocab_map[self.image_token_id] = "<image>"
start = self.vq_img_token_start_id
end = self.vq_img_token_start_id + self.vq_num_embeds
for i in range(start, end):
vocab_map[i] = f"IMGIMGBS{i}" # dummy str for each token, anything starting with IMGIMG
return ChameleonConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
vocabulary_map={v: k for k, v in vocab_map.items()},
vq_config=self.get_vq_config(),
)
def get_vq_config(self):
return {
"embed_dim": self.vq_embed_dim,
"num_embeddings": self.vq_num_embeds,
"latent_channels": self.vq_embed_dim,
"in_channels": 3,
"base_channels": 32, # we have a GroupNorm of 32 groups, so can't do less
"channel_multiplier": self.vq_channel_multiplier,
}
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = ChameleonModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = ChameleonForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
model = ChameleonForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ChameleonModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ChameleonModel, ChameleonForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (ChameleonForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": ChameleonModel,
"text-generation": ChameleonForConditionalGeneration,
"image-text-to-text": ChameleonForConditionalGeneration,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
def setUp(self):
self.model_tester = ChameleonModelTester(self)
self.config_tester = ConfigTester(self, config_class=ChameleonConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = ChameleonModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = ChameleonModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@unittest.skip("Chameleon forces some token ids to be -inf!")
def test_batching_equivalence(self):
pass
@require_torch
class ChameleonIntegrationTest(unittest.TestCase):
@slow
@require_bitsandbytes
@require_read_token
def test_model_7b(self):
model = ChameleonForConditionalGeneration.from_pretrained(
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
)
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
image = Image.open(
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
)
prompt = "<image>Describe what do you see here and tell me about the history behind it?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, torch.float16)
# greedy generation outputs
EXPECTED_TEXT_COMPLETION = ['Describe what do you see here and tell me about the history behind it?The image depicts a star map, with a bright blue dot in the center representing the star Alpha Centauri. The star map is a representation of the night sky, showing the positions of stars in'] # fmt: skip
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_bitsandbytes
@require_read_token
def test_model_7b_batched(self):
model = ChameleonForConditionalGeneration.from_pretrained(
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
)
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
image = Image.open(
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
)
image_2 = Image.open(
requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw
)
prompts = [
"<image>Describe what do you see here and tell me about the history behind it?",
"What constellation is this image showing?<image>",
]
inputs = processor(images=[image, image_2], text=prompts, padding=True, return_tensors="pt").to(
model.device, torch.float16
)
# greedy generation outputs
EXPECTED_TEXT_COMPLETION = [
'Describe what do you see here and tell me about the history behind it?The image depicts a star map, with a bright blue dot in the center representing the star Alpha Centauri. The star map is a representation of the night sky, showing the positions of stars in',
'What constellation is this image showing?The image shows the constellation of Orion.The image shows the constellation of Orion.The image shows the constellation of Orion.The image shows the constellation of Orion.'
] # fmt: skip
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_bitsandbytes
@require_read_token
def test_model_7b_multi_image(self):
model = ChameleonForConditionalGeneration.from_pretrained(
"facebook/chameleon-7b", load_in_4bit=True, device_map="auto"
)
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
image = Image.open(
requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw
)
image_2 = Image.open(
requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw
)
prompt = "What do these two images have in common?<image><image>"
inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.float16)
# greedy generation outputs
EXPECTED_TEXT_COMPLETION = ['What do these two images have in common?The two images show a connection between the night sky and the internet. The first image shows a starry night sky, with the stars arranged in a pattern that resembles the structure of the internet. The'] # fmt: skip
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)