mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Updates the default branch from master to main * Links from `master` to `main` * Typo * Update examples/flax/README.md Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
163 lines
6.6 KiB
Plaintext
163 lines
6.6 KiB
Plaintext
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
-->
|
|
|
|
# Converting Tensorflow Checkpoints
|
|
|
|
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
|
|
that can be loaded using the `from_pretrained` methods of the library.
|
|
|
|
<Tip>
|
|
|
|
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
|
|
transformers >= 2.3.0 installation.
|
|
|
|
The documentation below reflects the **transformers-cli convert** command format.
|
|
|
|
</Tip>
|
|
|
|
## BERT
|
|
|
|
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the
|
|
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
|
|
|
|
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated
|
|
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from
|
|
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
|
|
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).
|
|
|
|
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
|
|
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\
|
|
`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.
|
|
|
|
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch.
|
|
|
|
Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model:
|
|
|
|
```bash
|
|
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
|
|
|
|
transformers-cli convert --model_type bert \
|
|
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
|
|
--config $BERT_BASE_DIR/bert_config.json \
|
|
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
|
|
```
|
|
|
|
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models).
|
|
|
|
## ALBERT
|
|
|
|
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
|
|
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
|
|
|
|
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying
|
|
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will
|
|
need to have TensorFlow and PyTorch installed.
|
|
|
|
Here is an example of the conversion process for the pre-trained `ALBERT Base` model:
|
|
|
|
```bash
|
|
export ALBERT_BASE_DIR=/path/to/albert/albert_base
|
|
|
|
transformers-cli convert --model_type albert \
|
|
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
|
|
--config $ALBERT_BASE_DIR/albert_config.json \
|
|
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
|
|
```
|
|
|
|
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models).
|
|
|
|
## OpenAI GPT
|
|
|
|
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
|
|
save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\
|
|
)
|
|
|
|
```bash
|
|
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
|
|
|
|
transformers-cli convert --model_type gpt \
|
|
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config OPENAI_GPT_CONFIG] \
|
|
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
|
|
```
|
|
|
|
## OpenAI GPT-2
|
|
|
|
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2))
|
|
|
|
```bash
|
|
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
|
|
|
|
transformers-cli convert --model_type gpt2 \
|
|
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config OPENAI_GPT2_CONFIG] \
|
|
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
|
|
```
|
|
|
|
## Transformer-XL
|
|
|
|
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
|
|
|
|
```bash
|
|
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
|
|
|
|
transformers-cli convert --model_type transfo_xl \
|
|
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--config TRANSFO_XL_CONFIG] \
|
|
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
|
|
```
|
|
|
|
## XLNet
|
|
|
|
Here is an example of the conversion process for a pre-trained XLNet model:
|
|
|
|
```bash
|
|
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
|
|
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
|
|
|
|
transformers-cli convert --model_type xlnet \
|
|
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
|
|
--config $TRANSFO_XL_CONFIG_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
|
|
[--finetuning_task_name XLNET_FINETUNED_TASK] \
|
|
```
|
|
|
|
## XLM
|
|
|
|
Here is an example of the conversion process for a pre-trained XLM model:
|
|
|
|
```bash
|
|
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
|
|
|
|
transformers-cli convert --model_type xlm \
|
|
--tf_checkpoint $XLM_CHECKPOINT_PATH \
|
|
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
|
|
[--config XML_CONFIG] \
|
|
[--finetuning_task_name XML_FINETUNED_TASK]
|
|
```
|
|
|
|
## T5
|
|
|
|
Here is an example of the conversion process for a pre-trained T5 model:
|
|
|
|
```bash
|
|
export T5=/path/to/t5/uncased_L-12_H-768_A-12
|
|
|
|
transformers-cli convert --model_type t5 \
|
|
--tf_checkpoint $T5/t5_model.ckpt \
|
|
--config $T5/t5_config.json \
|
|
--pytorch_dump_output $T5/pytorch_model.bin
|
|
```
|